Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Patent
1998-03-11
2000-12-19
Michl, Paul R.
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
524405, 524406, C08K 310
Patent
active
061628514
DESCRIPTION:
BRIEF SUMMARY
TECHNICAL FIELD
Polyolefins are synthetic organic thermoplastics that are composed of carbon and hydrogen and as such, are inherently flammable. Applications incorporating polyolefins such as: construction, transportation, electrical, home furnishings, toys, outdoor play equipment, industrial tanks, containers, materials handling equipment and housewares, demand compliance with mandatory flame retardancy requirements, thereby requiring the addition of flame retardant additives.
A variety of flame retardant additives have been developed specifically for treatment of polyolefins to hinder ignition and reduce flame spread so the polyolefin can meet the required flammability specifications. Typically, most additive type flame retardants are incompatible with the polymer matrix and lead to detrimental mechanical and physical effects which are demonstrated by an observable loss in physical property attributes, particularly impact strength. The usual result is a compromise between deteriorated physical properties and the desired enhancement of combustion resistance.
Flame retardants typically act by one of three possible modes of operation: (1) Flame Phase Reaction wherein the flame retardant additive alters the composition of the decomposition products of the polymer, quenches free radical chain reactions and reduces the energy available for combustion thus making it less exothermic (combinations of halogen and antimony work in this manner); (2) Condensed Phase Reactions wherein the additives work by inducing the formation of carbonaceous char instead of the highly volatile, combustible gases, the char providing a layer of insulation that protects the unreacted surface from the heat source (phosphorus based compounds act as char formers as do inorganic materials and certain halogen containing compounds); and (3) Heat Absorption Reactions wherein the additives work by providing a heat sink through the evaporation of water of hydration which in turn can have a surface cooling effect thus preventing ignition (alumina trihydrate and magnesium hydroxide operate in this manner).
To date there is no ideal flame retardant commercially available. They all have detrimental effects on the physical properties of the polymer they are incorporated in. It would, therefore, be desirable to provide a highly flame retardant, impact resistant polyolefin as well as a method for imparting flame retardance and improved impact resistance to polyolefin compositions in which the additives are uniformly dispersed throughout the composition.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a halogenated flame retardant polyolefin compositions with improved impact.
It is a further object of this invention to provide a method of preparing a novel halogenated flame retardant polyolefin composition having the flame retardant additives uniformly dispersed therein.
It is yet another object of the invention to provide a method of preparing a novel impact resistant flame retardant polyolefin composition having the impact modifying additives uniformly dispersed therein.
It is still another object of this invention to provide novel compositions of matter based upon unobvious and unique combinations of various flame retardant additives.
Generally speaking, the present invention is directed to a novel impact modified flame retardant polyolefin composition. The compositions comprise: a polyolefin polymer; at least one functionalized low crystalline ethylene copolymer or at least one non-functionalized semi-crystalline ethylene copolymer; at least one halogen containing organic flame retardant; at least one metal oxide; at least one fluoropolymer; and at least one functionalized silicone additive.
Optionally, the composition further comprises at least one of, and preferably all of: at least one inorganic flame retardant compound; at least one hydrated metallic silicate compound; at least one primary antioxidant; and at least one secondary antioxidant. The composition exhibits a high degree of flame resistance and also exhibits
REFERENCES:
patent: 4563488 (1986-01-01), Minami
patent: 5109045 (1992-04-01), Price
patent: 5635060 (1997-06-01), Hagen
patent: 5645603 (1997-07-01), Peters
Landau Steven D.
Lee Victor W.
Wood Michael T.
WyKoff Ralph E.
ICC Industries Inc.
Michl Paul R.
LandOfFree
Flame retardant polyolefins for molding applications does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flame retardant polyolefins for molding applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flame retardant polyolefins for molding applications will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-271777