Flame retardant composition

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S391000, C428S396000, C524S406000, C524S425000, C524S437000, C524S516000, C524S548000, C524S808000, C524S264000

Reexamination Certificate

active

06387993

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a water-based flame-retardant composition. Particularly, the invention relates to a water-based flame-retardant composition useful as a coating or an adhesive.
BACKGROUND OF THE INVENTION
Flame-retardant compositions are used extensively throughout structures such as buildings; structural beams and columns; ceilings; walls; furnishings and other construction components; as well as airplanes; ships and submarines. When components of these structures, including the incorporated flame-retardant compositions, burn, they can present hazards to occupants of the structures. A particular concern is the spread of flame and the generation of smoke, heat and toxic gases when fires occur in confined structures such as occupied buildings, ships and submarines.
Many conventional flame-retardant compositions contain very high levels of organic components and halogens such as chlorine and bromine. Organic components are flammable and contribute not only to the spread of the fire, but also the generation of smoke and heat release. Halogen-containing components also produce toxic gases that threaten life and are corrosive. This is a particular concern for flame-retardant compositions used on ships and submarines, where not only flame spread and smoke, but also heat release and toxic gases during the fire are extremely detrimental.
Efforts have been made to develop some non-halogen, water based flame-retardant coating compositions. The organic content of these compositions are normally higher than 35%, and can be as high as over 50%, based on the dried film, as the binders and certain additives are typically of an organic nature. Because of the high organic content in current flame-retardant coating compositions, while they may be able to meet the requirements for low flame spread, they would be high in smoke and contribute significantly to toxic gasses and heat release. However, reducing the organic content in these flame-retardant coating compositions would cause many other application problems with adhesion, flexibility, film formation, film integrity and shelf stability.
Accordingly, a substantial need exists for a flame-retardant composition having low organic content and capable of meeting the desired fire safety as well as the service and application conditions such as good adhesion to the various substrates, paintability, flexibility, wet adhesive strength, crack resistance, shelf stability and non-hazardous during application.
SUMMARY OF THE INVENTION
In one aspect, the invention features a water-based flame-retardant composition comprising at least one polyvinylpyrrolidone polymer; at least one silane coupling agent; and at least one inorganic compound.
In another aspect, the invention features a water-based flame-retardant composition further comprising at least one polymeric emulsion.
In yet another aspect, the invention provides an article comprising a substrate and any one of the aforesaid flame-retardant compositions disposed on a surface of the substrates.
In yet another aspect, the invention provides a method of manufacturing a coated article comprising applying any one of the aforesaid flame-retardant compositions to a surface of a substrate.
The water-based flame-retardant composition of the invention can be formulated to have low organic content and to be free of halogens such that they exhibit low flame spread, low smoke and do not contribute significantly to toxic gases and heat release in a fire.
Particularly, the water-based flame-retardant composition can be formulated to be endothermic and noncombustible such that it does not contribute to the burning and does not generate toxic gases in a fire, therefore, can be non-hazardous during a fire.
The water-based flame-retardant composition can also be formulated to have good wet and dry adhesive strengths as well as very good shelf stability.
The water-based flame-retardant composition can also be formulated for easy application, e.g., by brushing, troweling, extrusion or spraying.
The water-based flame-retardant composition of the invention is useful as a coating or an adhesive, or a combination thereof.
Other features of the invention will be apparent from the following description of the invention and preferred embodiments thereof, and from the claims.
DETAILED DESCRIPTION OF THE INVENTION
The water-based flame-retardant composition of the invention comprises at least one polyvinylpyrrolidone polymer; at least one silane coupling agent; at least one inorganic compound; and optionally, at least one polymeric emulsion.
Examples of useful polyvinylpyrrolidone polymers includes polyvinylpyrrolidone polymers that is commercially available under a number of trade designations including, e.g., PVP K-15, K-30, K-90, and K-120 from International Specialty Products, Bound Brook, N.J. Polyvinylpyrrolidone polymer is present in the flame-retardant compositions, preferably, in an amount of from 0.5% by weight to about 8.0% by weight, more preferably about 1.0% by weight to about 6.0% by weight, most preferably about 1.0% by weight to about 4.0% by weight, based on the total weight of the composition. In another aspect of the invention, when a polymeric emulsion is included in the flame-retardant composition, the polyvinylpyrrolidone polymer may be present, preferably, in an amount of from 0.1% by weight to about 2% by weight, more preferably about 0.1% by weight to about 1% by weight, most preferably about 0.2% by weight to about 0.7% by weight, based on the total weight of the composition.
The silane coupling agents useful in the compositions of the invention are selected to be compatible with the composition and to have good wetting properties for the inorganic compounds. Examples of useful types of silane coupling agents include amino (e.g., styrylamino), acrylate, methacrylate, epoxy, vinyl, and mercapto silane coupling agents and mixtures thereof. Particularly preferred silane coupling agents are amine and epoxy silane coupling agents such as N-[3-(trimethyoxysilyl)propyl]-1,2-ethanediamine and gamma-glycidoxypropyltrimethoxysilane. Examples of commercially available silane coupling agents include those under the trade designations Silquest A-187, A-189, A-1100, A-1120 and A-1170 from OSI Specialties, Inc., Greenwich, Conn. The silane coupling agent may be present in the composition, preferably, in an amount of from about 0.1% by weight to about 1% by weight, more preferably, about 0.2% by weight to about 0.6% by weight, based on the total weight of the composition.
Many inorganic compounds are known and used as flame-retardant agents. Many other inorganic additives, such as mineral fillers and pigments typically used in paint and adhesive formulations, also exhibit flame-retardant properties and can function as noncombustible filler/extenders, thus, act as flame-retardant agents in the invention. The inorganic compounds useful in the compositions of the invention include both the known inorganic flame-retardant agents and other inorganic additives capable of acting as flame-retardant agents. Examples of useful inorganic compounds include metal oxides such as aluminum oxide, titanium dioxide, and antimony trioxide; metal carbonates such as calcium carbonate, magnesium carbonate, zinc carbonate and barium carbonate; metal hydroxides such as aluminum hydroxide and magnesium hydroxide; and metal sulfates such as calcium sulfate and barium sulfate; and combinations thereof. Other suitable inorganic compounds include molybdic oxide, ammonium octamolybdate and other molybdates, zinc phosphate, ammonium polyphosphate, magnesium borate. Talc, kaolin, clay, silica, bentonite, mica, feldspar, carbon black, wollastonite, and combinations thereof are also suitable. Preferred inorganic compounds do not emit toxic gases, e.g., chlorine and bromine, during combustion and are endothermic such as hydrated minerals, e.g., hydrated alumina, hydrated calcium sulfate and zinc borate. The inorganic compound is useful in a variety of forms including, e.g., powder, particles and fibers.
The amou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flame retardant composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flame retardant composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flame retardant composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2909467

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.