Flagellin gene, FlaC of campylobacter

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C435S006120, C435S007320, C424S234100

Reexamination Certificate

active

06211159

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related to the molecular cloning of a gene encoding a flagellin protein, identified herein as FlaC, of the flagellar filament from a strain of Campylobacter.
BACKGROUND OF THE INVENTION
Campylobacter jejuni
is a Gram-negative spiral microaerophilic bacterium that has been recognized as a cause of secretory type diarrhea and enteritis (Ref. 1). Throughout this application, various references are referred to in parenthesis to more fully describe the state of the art to which this invention pertains. Full bibliographic information for each citation is found at the disclosed end of the specification immediately preceding the claims. These references are hereby incorporated by reference into the present disclosure). The flagellum of
C. jejuni
is responsible for bacterial motility which enhances the organism's pathogenicity. The flagellum consists of three major components; the filament, the hook, and the basal body (Ref. 2). A campylobacter cell carries a single unsheathed flagellum at one or both poles of the body. The flagella are responsible for the high motility of the organisms as aflagellate mutants are nonmotile (Refs. 3, 4, 5, 6, 7, 8, 9). A number of studies indicated that the polar flagellum plays an important role in colonization of the viscous mucus lining of the gastric intestinal tract and that it is an important virulence determinant (Refs. 3,4,7,10,11).
The basic structure of the bacterial flagellum consists of a propeller (filament) connected via a universal joint (hook) to a transmission shaft, motor and brushings (basal body) embedded in the cell envelope (Ref. 12). The flagellar filament consists of several thousand self-assembling protein (flagellin) monomers arranged in a helix. These form a hollow tube of relatively constant diameter and variable length with an over corkscrew morphology.
Most eubacterial flagellar filaments that have been characterized appear to be composed of a single kind of flagellin (Ref. 8). However a number of Eubacteria have now been shown to possess multiple flagellingenes (Refs. 6, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22),
C jejuni
(Refs. 13, 15, 17, 21) and
C. coli
(Refs. 6, 13) have been reported to have two flagellin genes (flaA and flaB). In
C. jejuni,
the flagellin genes flaA and flaB have been isolated and sequenced, however prior to the present invention a third flagellin gene had not been isolated and characterized.
It would be advantageous to provide nucleic acid molecules encoding flagellin proteins of the flagella for strains of Campylobacter and purified flagellin proteins, including flaC for use as antigens, immunogenic compositions, including vaccines, carriers for other antigens and immunogens and the generation of diagnostic reagents.
SUMMARY OF THE INVENTION
The present invention is directed towards the provision of purified and isolated nucleic acid molecules encoding a flagellin protein C (FlaC) of a strain of Campylobacter or a fragment or an analog of the flagellin protein. The nucleic acid molecules provided herein are useful for the specific detection of strains of Campylobacter, and for diagnosis of infection by Campylobacter. The purified and isolated nucleic acid molecules provided herein, such as DNA, are also useful for expressing the flaC gene by recombinant DNA means for providing, in an economical manner, purified and isolated FlaC proteins, subunits, fragments or analogs thereof. The FlaC protein, subunits or fragments thereof or analogs thereof, as well as nucleic acid molecules encoding the same and vectors containing such nucleic acid molecules, are useful in immunogenic compositions against diseases caused by Campylobacter, the diagnosis of infection by Campylobacter and as tools for the generation of immunological reagents. Monoclonal antibodies or mono-specific antisera (antibodies) raised against the FlaC protein produced in accordance with aspects of the present invention are useful for the diagnosis of infection by Campylobacter, the specific detection of Campylobacter (in for example in vitro and in vivo assays) and for the treatment of diseases caused by Campylobacter.
Peptides corresponding to portions of the FlaC protein or analogs thereof are useful immunogenic compositions against disease caused by Campylobacter, the diagnosis of infection by Campylobacter and as tools for the generation of immunological reagents. Monoclonal antibodies or antisera raised against these peptides, produced in accordance with aspects of the present invention, are useful for the diagnosis of infection by Campylobacter, the specific detection of Campylobacter (in, for example, in vitro and in vivo assays) and for use in passive immunization as a treatment of disease caused by Campylobacter.
In accordance with one aspect of the present invention, there is provided a purified and isolated nucleic acid molecule encoding a flagellin protein (FlaC) of flagellum of a strain of Campylobacter, more particularly, a strain of
Campylobacter jejunis,
or a fragment or an analog of the FlaC protein.
In one preferred embodiment of the invention, the nucleic acid molecule may encode the FlaC protein of the Campylobacter strain.
In another aspect of the present invention, there is provided a purified and isolated nucleic acid molecule having a nucleotide sequence selected from the group consisting of: (a) the entire nucleotide sequence set out in
FIG. 1
(SEQ ID No: 1), or the complementary sequence of said sequence; (b) the coding nucleotide sequence set out in
FIG. 1
(SEQ ID No: 2), or the complementary sequence of said sequence; (c) a nucleotide sequence encoding the amino acid sequence set forth in
FIG. 1
(SEQ ID No: 3); and (d) a nucleotide sequence which hybridizes under stringent conditions to any one of the sequences defined in (a), (b) or (c). The DNA sequence defined in (c) preferably has at least about 90% sequence identity with any one of the DNA sequences defined in (a) and (b).
In an additional aspect, the present invention includes a vector adapted for transformation of a host, comprising a nucleic acid molecule as provided herein. The vector may be one having the characteristics of plasmid pD2-2.
The plasmids may be adapted for expression of the encoded FlaC protein, fragments or analogs thereof, in a heterologous or homologous host, in either a lipidated or non-lipidated form. Accordingly, a further aspect of the present invention provides an expression vector adapted for transformation of a host comprising a nucleic acid molecule as provided herein and expression means operatively coupled to the nucleic acid molecule for expression by the host of the FlaC protein or the fragment or analog of the FlaC protein. In specific embodiments of this aspect of the invention, the nucleic acid molecule may encode substantially all the FlaC protein of the Campylobacter strain. The expression means may include a nucleic acid portion encoding a leader sequence for secretion from the host of the FlaC protein or the fragment or the analog of the FlaC protein. The expression means also may include a nucleic acid portion encoding a lipidation signal for expression from the host of a lipidated form of the FlaC protein or the fragment or the analog of the FlaC protein. The host may be selected from, for example,
Escherichia coli,
Bordetella, Bacillus, Haemophilus, Moraxella, fungi, yeast or baculovirus and Semliki Forest virus expression systems may be used.
In an additional aspect of the invention, there is provided a transformed host containing an expression vector as provided herein. The invention further includes a recombinant FlaC protein or fragment or analog thereof producible by the transformed host. Further aspects of the present invention provide an isolated and purified FlaC protein of a Campylobacter strain substantially free from other proteins of the Campylobacter strain. The Campylobacter strain may be
C. jejuni.
The present invention further provides synthetic peptides corresponding to portions of the FlaC protein. Accordingly, in a further a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flagellin gene, FlaC of campylobacter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flagellin gene, FlaC of campylobacter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flagellin gene, FlaC of campylobacter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2555359

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.