Fixed abrasives for optical polishing

Abrasive tool making process – material – or composition – With synthetic resin

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C051S295000, C051S309000

Reexamination Certificate

active

06258136

ABSTRACT:

BACKGROUND TO THE INVENTION
The present invention relates to products useful in polishing optical surfaces. The surface polished can be glass or plastic.
It is well known that in order to produce a satisfactory optical surface, it is necessary that the surface be free of scratches and have as low an R
a
as possible. This R
a
measurement is the average distance between the highest and lowest points on the surface perpendicular to the plane of the glass sheet being polished. Thus, accepting that the surface will not be totally flat at the submicron scale, it is a measure of the variation between highest and lowest points. Clearly the lower the figure the better for optical clarity and freedom from distortion.
There is however another consideration and that is the speed at which the desired level of optical perfection is reached. Glass polishing is a chemical mechanical process that only proceeds in an aqueous environment. It is necessary for the polishing compound to react with the glass surface and the water, as well as the surface to be subject to abrasion. Some materials such as ceria are quite reactive but not very abrasive. Others such as alumina are quite abrasive but do not have much surface reactivity. This subject is well treated in an article by Lee Clark entitled “Chemical Processes in Glass Polishing” appearing in Journal of Non-Crystalline Solids 120 (1990), 152-171. In an industrial environment, there is a significant advantage in finishing the process in shorter rather than longer times, particularly when no quality sacrifice is required and or where quality can be improved.
In polishing processes there are two approaches. The first employs an abrasive formulation in the form of a slurry of the abrasives in a liquid medium. In the second the formulation is presented to the glass in the substrate to be polished in the form of a tool. This tool can be a bonded abrasive or a coated abrasive particularly one in which the coated abrasive surface is engineered to have properties that enable it to provide a very high uniformity of surface quality. It is with this latter approach that this invention is concerned.
In processes that use a slurry of abrasive particles in an aqueous medium, (usually based on deionized water), the slurry is placed in contact with the surface to be polished and a pad is caused to move across the surface in predetermined patterns so as to cause the abrasive in the slurry to polish the surface. In the second the abrasive particles are embedded in a resin matrix in the form of a tool and the tool is then used to polish the optical surface. The present invention relates to the first approach in which slurries are used.
U.S. application Ser. No. 09/025,730 U.S. Pat. No. 5,989,301 which was filed on Feb. 18, 1998 describes aqueous slurries comprising alpha alumina with a particle size of less than 0.5 micrometer and ceria in the form of a powder with sizes from 0.2 to 4 micrometers.
Tools comprising abrasive particles for optical polishing are somewhat limited by the requirement of excellent finish. While in theory bonded tools, that is to say tools in which the particles are retained in a bond material and the overall tool is given a predetermined shape such as a wheel or a stick, are not easily presented to the workpiece in a suitable form there have been developments in this field which now make this practicable. Coated tools are however recognized to be readily adapted to this application and coated tool products formulations comprising very fine solid particles retained in a binder that is a radiation-curable resin and deposited on a smooth substrate have proved very successful. Such coated tools have been described in for example U.S. Pat. No. 5,011,513 (Zador et al.) and U.S. Pat. No. 5,014,468 (Ravipati et al.). The Ravipati et al. patent represents a complete departure from traditional coated abrasives in which a substrate receives an abrasive grain either dispersed in a binder, (as in Zador et al.), or adhered by separately applied maker and size coats. In fact the workpiece is presented with an engineered surface comprising regular, similar, raised structures with void spaces between wherein the abrasive particles are very small by comparison with the size of the structures. This allowed the product to achieve excellent finishes quite quickly. Other later examples of engineered surfaces that can be used in the same fashion are described in, for example, U.S. Pat. No. 5,152,917 (Pieper et al.); U.S. Pat. No. 5,833,724; (Wei et al.) and U.S. Pat. No. 5,840,088 (Yang et al.).
Polishing tools are used in conjunction with a liquid medium sprayed on to the surface while the tool is polishing so as to provide the “chemical” portion of the chemical/mechanical polishing process, (sometimes abbreviated to “CMP”).
Success in polishing glasses is of course to some extent dependent on the hardness of the glass. With very hard glasses polishing can take a very long time indeed and raises finish problems if the obvious expedient of using a harder abrasive is tried.
The formulations of the prior art are often very effective at achieving the desired result. However they also take quite a long time. A novel formulation has now been developed, where two oxides, “alumina and ceria”, work together in synergy, such that their mutual interaction gives better results than the sum of any single component effects. This formulation permits a very high level of optical perfection to be achieved in a much shorter time than is attainable with such prior art formulations without the need for the elevated temperatures sometimes used to enhance reactivity. In addition they polish even hard glasses very effectively with little or no collateral damage to the surface. They can be used with “pad” or “pitch” type polishing apparatus or in polishing tools, particularly coated abrasives with engineered surfaces.
GENERAL DESCRIPTION OF THE INVENTION
The present invention provides an abrasive optical polishing tool which comprises alpha alumina and ceria particles in an alumina to ceria ratio of from 95:5 to 75:25 and more preferably from 90:10 to 80:20 dispersed in hardened resin binder. The alpha alumina particles preferably have a mean particle size of 0.5 micrometers or less and more preferably from 0.10 to 0.25 micrometers and the ceria is present as particles with mean particle sizes of from 0.2 to 4 micrometers.
The polishing tool can have the form of a coated abrasive with the abrasive-containing structure bonded to a backing material but it can also have the form of a bonded abrasive or a composite abrasive. While these latter have not hitherto been associated with optical polishing, this practical division is no longer rigid. Thus abrasive wheels with organic bond materials have been tried for fine polishing applications as have products in which the abrasive particles are bonded to the fibers of an open fibrous structure using a resin bond, (commonly called “composite abrasives”). The most frequently encountered embodiments of this invention are however most typically coated abrasives.
A coated abrasive optical polishing tool can be product with a uniform coating of a layer comprising the abrasive particles dispersed in a hardened binder resin adhered to a backing material in a layer of uniform thickness or in a form presenting an engineered surface. In the context of this Application an engineered surface is one that has been shaped or formed in such a way that it comprises a plurality of repeating, often but not necessarily, similar structures deposited on and adhered to a backing material in a more or less regular array. The structures comprise abrasive particles of alumina and ceria dispersed in a hardened binder resin. The structures can be completely separated or they can abut other structures on some or all sides. Typically they decrease in thickness with increasing distance from the backing material to which they are bonded. The essence of an engineered surface is that it is constructed such that a workpiece to which the tool is presented contacts a spaced ar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fixed abrasives for optical polishing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fixed abrasives for optical polishing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fixed abrasives for optical polishing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2461059

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.