Fixed abrasive article for use in modifying a semiconductor...

Abrading – Flexible-member tool – per se – Laminate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S527000, C451S529000, C451S534000, C451S550000

Reexamination Certificate

active

06632129

ABSTRACT:

BACKGROUND
The invention relates to modifying the rigid substrate of a fixed abrasive article used in semiconductor wafer modification.
Chemical mechanical planarization (CMP) processes are used in semiconductor wafer fabrication to polish and planarize a semiconductor wafer. CMP processes involve placing an abrasive between a relatively stiff pad and a semiconductor wafer and moving the pad and the semiconductor wafer in relation to each other to modify the surface of the wafer. The abrasive used in a CMP process can be in the form of a slurry, i.e., a liquid medium that includes abrasive particles, or a fixed abrasive element, e.g., an element that includes abrasive particles bonded to a backing.
CMP processes attempt to remove material selectively from relatively higher locations, i.e., features having dimensions on the scale of those features commonly produced by photolithography, to planarize the wafer surface. CMP processes also attempt to remove material uniformly on the scale of the semiconductor wafer so that each die on the wafer is planarized to the same degree in an equivalent period of time. The rate of planarization for each die is preferably uniform over the entire wafer. It is difficult to achieve both of these objectives simultaneously because semiconductor wafers are often warped or curved. Some semiconductor wafers also include numerous step height variations or protrusions, which are produced during the fabrication sequence of an integrated circuit on a wafer. These height variations and the curvature and warp of the semiconductor wafer can interfere with the uniformity of the polishing process such that some regions of the wafer become over polished while other regions remain under polished.
CMP processes that employ a slurry have been modified in an effort to overcome the problem of non-uniform polishing. One such effort employs a composite polishing pad that includes a first layer of elastic material, which is attached to a polishing table, and a second layer of a stiff material covering the elastic layer. The second layer includes an array of tiles separated by channel regions. The channel regions channel slurry across the surface of the polishing pad during the polishing process. Other composite polishing pads include a third layer of a relatively low modulus spongy porous material that transports slurry across the surface of the wafer being polished. During polishing liquid can be transported through the porous material and into the lower layers of the polishing pad.
Fixed abrasive CMP processes do not rely on the transport of loose abrasive particles over the surface of the polishing pad to effect polishing. Instead, such processes use fixed abrasive polishing pads, which include a number of three-dimensional abrasive composites fixed in location on a backing. The three-dimensional abrasive composites include abrasive particles disposed in a binder and bonded to the backing, which forms a relatively high modulus fixed abrasive element. During the CMP process, the wafer surface is polished by contact with the fixed abrasive composites and a substantial majority of the abrasive particles in the abrasive composites remain bonded to the backing.
After a CMP polishing process the semiconductor wafer will have an edge exclusion zone, i.e., a zone at the edge of a polished semiconductor wafer that is not polished sufficiently to provide useful components, e.g., semiconductor components. The portion of the semiconductor wafer that constitutes the edge exclusion zone could be used to make semiconductor devices if it were uniform. Thus, the area of the edge exclusion zone affects the die yield of the wafer.
SUMMARY
In one aspect, the invention features an abrasive article including a) a fixed abrasive element including a plurality of abrasive particles, b) a resilient element, and c) a plurality of rigid segments disposed between the fixed abrasive element and the resilient element.
In some embodiments the rigid segments are attached to one another. In other embodiments the rigid segments are detached from one another. In one embodiment the rigid segments extend from a common substrate and are at least partially defined by a plurality of intersecting grooves in the substrate.
In one embodiment the fixed abrasive element includes a discontinuous layer. In another embodiment the fixed abrasive element includes a plurality of fixed abrasive segments, each fixed abrasive segment being coextensive with one of the rigid segments. In some embodiments the fixed abrasive element extends continuously across a plurality of the rigid segments. In another embodiment the fixed abrasive element is bonded to the rigid segments. In other embodiments the rigid segments are bonded to the resilient element.
In another embodiment the resilient element includes a plurality of resilient segments. In some embodiments the resilient segments are bonded to the rigid segments.
In another embodiment the fixed abrasive element includes a textured, three-dimensional fixed abrasive element. In some embodiments the fixed abrasive element includes a plurality of three-dimensional fixed abrasive composites.
In some embodiments the rigid segments include a top surface, a side wall and a union between the top surface and the sidewall, wherein the union is beveled. In other embodiments the rigid segments include a top surface, a side wall and a union between the top surface and the side wall, wherein the union between the top surface and the sidewall is curved. Another embodiment includes rigid segments that interdigitate with one another.
In other embodiments the rigid segments define a shape selected from the group consisting of a circle, ellipse, triangle, square, rectangle, pentagon, hexagon, heptagon, and octagon. In some embodiments the rigid segments are selected from the group consisting of pyramidal, conical, cylindrical, frusto-conical, frusto-pyramidal and other frusta.
In other embodiments the rigid segments have a cross-sectional area taken in a plane of the segment that is parallel with the abrasive surface of no greater than 400 mm
2
.
In another aspect, the abrasive article includes a) a fixed abrasive element including i) a backing, ii) a composition disposed on a first major surface of the backing, the composition including a binder and a plurality of abrasive particles, and b) a rigid element bonded to a second major surface of the backing, the rigid element including a plurality of rigid segments.
In other aspects the abrasive article includes a fixed abrasive element including a plurality of abrasive particles, a resilient element and a plurality of rigid elements disposed between the fixed abrasive element and the resilient element, the abrasive article being capable of conforming to the curvature of the surface of a semiconductor wafer and being rigid relative to a die on the surface of a semiconductor wafer.
In one aspect the invention features an apparatus for modifying the surface of a semiconductor wafer, the apparatus including a fixed abrasive element including a plurality of abrasive particles, a resilient element and a plurality of rigid segments disposed between the fixed abrasive element and the resilient element. In one embodiment the fixed abrasive element includes a textured, three-dimensional, fixed abrasive element. In another embodiment the fixed abrasive element includes a three-dimensional fixed abrasive composites. In other embodiments the fixed abrasive element is bonded to the rigid segments. In some embodiments the rigid segments are bonded to the resilient element.
In one embodiment the fixed abrasive element is capable of moving relative to the rigid segments. In another embodiment the fixed abrasive element and the rigid segments are capable of moving relative to the resilient element. In other embodiments the apparatus further includes a first web including the fixed abrasive element, a second web including the plurality of rigid segments, and a third web including the resilient element.
In another embodiment the first web and the second web are mo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fixed abrasive article for use in modifying a semiconductor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fixed abrasive article for use in modifying a semiconductor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fixed abrasive article for use in modifying a semiconductor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3114225

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.