Hazardous or toxic waste destruction or containment – Containment – Solidification – vitrification – or cementation
Reexamination Certificate
1999-06-28
2001-07-10
Suchfield, George (Department: 3672)
Hazardous or toxic waste destruction or containment
Containment
Solidification, vitrification, or cementation
C405S128350
Reexamination Certificate
active
06258018
ABSTRACT:
FIELD OF THE INVENTION
The present application describes treatment methods for metal-bearing materials, especially lead-bearing materials, such as soils, debris, waste materials, incinerator and furnace ashes, process streams, sludges and slurries, including all types of liquid and solid wastes.
BACKGROUND OF THE INVENTION
Only a few prior art patents have taught the immobilization of lead and/or other metals in different kinds of wastes to make the treated residuals suitable for disposal as special waste in a RCRA approved and licensed landfill facility. For example, some known methods to treat broader groups of metals are shown in U.S. Pat. No. 4,149,968 to Kupiec et al., U.S. Pat. Nos. 4,889,640 and 4,950,409 to Stanforth, U.S. Pat. No. 4,701,219 to Bonee, U.S. Pat. No. 4,652,381 to Inglis, and U.S. Pat. No. 4,671,882 to Douglas et al.
Kupiec et al. teaches the immobilization of heavy metals by treating an alkaline slurry of waste with a mixture of bentonite clay and Portland Cement.
Stanforth teaches a method of treating solid hazardous waste (containing unacceptable levels of lead and cadmium) with reactive calcium carbonate, reactive magnesium carbonate and reactive calcium magnesium carbonate. The patent teaches that addition of water is beneficial to facilitate the mixing of the solid waste with treatment additive and conversion of lead into non-leachable forms. Stanforth further discloses mixing solid waste with lime and carbon dioxide or bicarbonate.
Bonee U.S. Pat. No. 4,701,219, discloses the treatment of spent sorbent wastes (containing leachable vanadium, nickel, and sodium) with alkaline earth metal compounds, including calcium sulfate. According to that patent, powdered lime (calcium hydroxide or calcium oxide) and calcium fluoride were most effective in decreasing the leachable vanadium and nickel. Bonee discloses that calcium chloride, calcium carbonate, gypsum and sodium carbonate are relatively ineffective at reducing the leaching of vanadium and nickel from a petroleum cracking process particulate waste.
Douglas et al. discloses a process for producing a non-hazardous sludge from an aqueous solution by addition of phosphoric acid or an acid phosphate salt, adjusting the pH to about 5, adding a coagulating polymer and raising the pH to above 7 through the addition of lime. Then, the process includes dewatering the resulting sludge. This constitutes at least 5 or more steps making it cumbersome, time consuming and expensive.
Inglis teaches a process of treating industrial wastewater which has a pH of 2 and which is contaminated with sulfuric acid, lead, cooper and zinc. Calcium carbonate is added along with air to wastewater. This results in neutralization and formation of insoluble metal salts. The process is not applicable to wastes that have a pH of 6 to 9. However, limestone is relatively ineffective in removing lead from hazardous, solid or sludge material. Limestone does not react in the solid materials and metal carbonates that are formed are subject to degradation by acid rain and acidic landfill leachate conditions.
Hazardous wastes containing excessive amounts of leachable lead and/or other metals are banned from land disposal. The regulatory threshold limit under Resource Cons. and Recovery Act is 5 mg/l of leachable lead as measured by TCLP (toxicity characteristic leaching procedure) test criteria, United States Environmental Protection Agency (USEPA) method 1311 (SW-846). Waste materials containing TCLP lead levels in excess of 5 mg/l are defined as lead-toxic hazardous waste and are as such restricted from land-filling under current land ban regulations. The cost of disposing lead toxic hazardous waste materials is in excess of $200.00 per ton plus the cost of transporting the hazardous material to landfills for hazardous wastes, which do not exist in every state. This makes the disposal of lead toxic hazardous waste material very expensive. Therefore, treating the lead-bearing process materials and waste streams to render them non-hazardous by RCRA definition would cut down the costs of transportation and disposal tremendously.
SUMMARY OF THE INVENTION
The present invention discloses a method of treating metal-bearing, especially lead-bearing, waste materials.
The present invention relates to a chemical treatment technology for immobilizing leachable lead and/or other metals in contaminated soils, debris, ash, sludges, slurries, process materials, toxic hazardous wastes and solid waste materials. According to the present invention, a process for treating metal contaminated lead-toxic solid wastes in order to stabilize the leachable lead is disclosed, comprising the steps of: (i) mixing the solid waste with a sulfate compound, such as calcium sulfate dihydrate (gypsum powder) or sulfuric acid, having at least one sulfate ion for contacting waste particles and reacting with said leachable lead to produce a substantially insoluble lead composition, such as anglesite and/or calcium-substituted anglesite; and, (ii) mixing said solid waste and sulfate compound with a phosphate reagent, such as phosphoric acid, having at least one phosphate ion for reacting with said leachable lead to produce a substantially insoluble lead composition. The treated material from this process is substantially solid in form and passes the Paint Filter Test while satisfying the regulatory standard for TCLP lead. In all instances, application of this process has been found very reliable in meeting the treatment objectives and in consistently decreasing waste volume.
It is an object of the present invention to provide a technology for treatment of lead-containing solid waste and soil that produces and acceptably low level of leachable lead in the final product to comply with the statutory requirements of TCLP and to pass the Paint Filter Test.
Another object of the invention is to provide such a process while producing no wastewater or secondary waste streams during said process.
Still another object of the invention is to provide such a process which also causes the solid waste material to undergo a volume reduction as a result of treatment.
Yet another object of the invention is to cause fixation of the leachable lead in the solid waste that is permanent under both ordinary and extreme environmental conditions.
The invention relates to treatment methods employed to chemically convert leachable metal in metal-bearing solid and liquid waste materials to a non-leachable form by mixing the material with one or a combination of components, for example, lime or gypsum and phosphoric acid. The solid and liquid waste materials include contaminated sludges, slurries, soils, wastewaters, spent carbon, sand, wire chips, plastic fluff, cracked battery casings, bird and buck shots and tetraethyl lead contaminated organic peat and muck. The metal-bearing materials referred to herein which the present invention treats include those materials having leachable lead, aluminum, arsenic (III), barium, bismuth, cadmium, chromium (III), cooper, iron, nickel, selenium, silver and zinc. The present invention discloses a process comprising a single step mixing of one or more treatment additives, and a process comprising a two step mixing wherein the sequence of performing the steps may be reversible. The present invention provides a novel way of treating a plurality of metal-contaminated materials at a wide range of pH. The method works under acidic, alkaline and neutral conditions.
The processes of the present invention provide reactions that convert leachable metals, especially lead, into a non-leachable form which is geochemically stable for indefinite periods and is expected to withstand acid rain impacts as well as the conditions of a landfill environment.
A first group of treatment chemicals for use in the processes of the present invention includes lime, gypsum, alum, halites, Portland cement, and other similar products that can supply sulfates, halites, hydroxides and/or silicates.
A second group consists of treatment chemicals which can supply phosphate ions. This group includes produ
Chisick Steven A.
Pal Dhiraj
Yost Karl W.
McDermott Kevin E.
Sevenson Environmental Services, Inc.
Suchfield George
LandOfFree
Fixation and stabilization of metals in contaminated soils... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fixation and stabilization of metals in contaminated soils..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fixation and stabilization of metals in contaminated soils... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2478508