Chemistry: fischer-tropsch processes; or purification or recover – Group viii metal containing catalyst utilized for the...
Reexamination Certificate
2002-12-03
2004-07-06
Parsa, J. (Department: 1621)
Chemistry: fischer-tropsch processes; or purification or recover
Group viii metal containing catalyst utilized for the...
C518S717000, C518S721000
Reexamination Certificate
active
06759439
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
FIELD OF THE INVENTION
The present invention relates to a process for the preparation of hydrocarbons from synthesis gas, (i.e., a mixture of carbon monoxide and hydrogen), typically labeled the Fischer-Tropsch process. Particularly, this invention relates to the use of aluminum fluoride or fluorided alumina supported catalysts containing cobalt and rhenium and at least one other element selected from boron, phosphorus, potassium, manganese and vanadium, for the Fischer-Tropsch process.
BACKGROUND OF THE INVENTION
Large quantities of methane, the main component of natural gas, are available in many areas of the world. Methane can be used as a starting material for the production of hydrocarbons. The conversion of methane to hydrocarbons is typically carried out in two steps. In the first step methane is reformed with water or partially oxidized with oxygen to produce carbon monoxide and hydrogen (i.e., synthesis gas or syngas). In a second step, the syngas is converted to hydrocarbons.
This second step, the preparation of hydrocarbons from synthesis gas is well known in the art and is usually referred to as Fischer-Tropsch synthesis, the Fischer-Tropsch process, or Fischer-Tropsch reaction(s). Catalysts for use in such synthesis usually contain a catalytically active metal of Groups 8, 9, 10 (in the New notation of the periodic table of the elements, which is followed throughout). In particular, iron, cobalt, nickel, and ruthenium have been abundantly used as the catalytically active metals. Cobalt and ruthenium have been found to be most suitable for catalyzing a process in which synthesis gas is converted to primarily hydrocarbons having five or more carbon atoms (i.e., where the C
5
+
selectivity of the catalyst is high). Additionally, the catalysts often contain one or more promoters and a support or carrier material. Rhenium is a widely used promoter.
The Fischer-Tropsch reaction involves the catalytic hydrogenation of carbon monoxide to produce a variety of products ranging from methane to higher aliphatic alcohols. The methanation reaction was first described in the early 1900's, and the later work by Fischer and Tropsch dealing with higher hydrocarbon synthesis was described in the 1920's.
The Fischer-Tropsch synthesis reactions are highly exothermic and reaction vessels must be designed for adequate heat exchange capacity. Because the feed streams to Fischer-Tropsch reaction vessels are gases while the product streams include liquids, the reaction vessels must have the ability to continuously produce and remove the desired range of liquid hydrocarbon products. The process has been considered for the conversion of carbonaceous feedstock, e.g., coal or natural gas, to higher value liquid fuel or petrochemicals. The first major commercial use of the Fischer-Tropsch process was in Germany during the 1930's. More than 10,000 B/D (barrels per day) of products were manufactured with a cobalt based catalyst in a fixed-bed reactor. This work has been described by Fischer and Pichler in Ger. Pat. No. 731,295 issued Aug. 2, 1936.
Motivated by production of high-grade gasoline from natural gas, research on the possible use of the fluidized bed for Fischer-Tropsch synthesis was conducted in the United States in the mid-1940s. Based on laboratory results, Hydrocarbon Research, Inc. constructed a dense-phase fluidized bed reactor, the Hydrocol unit, at Carthage, Tex., using powdered iron as the catalyst. Due to disappointing levels of conversion, scale-up problems, and rising natural gas prices, operations at this plant were suspended in 1957. Research has continued, however, on developing Fischer-Tropsch reactors such as slurry-bubble columns, as disclosed in U.S. Pat. No. 5,348,982 issued Sep. 20, 1994.
Commercial practice of the Fischer-Tropsch process has continued from 1954 to the present day in South Africa in the SASOL plants. These plants use iron-based catalysts, and produce gasoline in relatively high-temperature fluid-bed reactors and wax in relatively low-temperature fixed-bed reactors.
Research is likewise continuing on the development of more efficient Fischer-Tropsch catalyst systems and reaction systems that increase the selectivity for high-value hydrocarbons in the Fischer-Tropsch product stream. In particular, a number of studies describe the behavior of iron, cobalt or ruthenium based catalysts in various reactor types, together with the development of catalyst compositions and preparations.
There are significant differences in the molecular weight distributions of the hydrocarbon products from Fischer-Tropsch reaction systems. Product distribution or product selectivity depends heavily on the type and structure of the catalysts and on the reactor type and operating conditions. Accordingly, it is highly desirable to maximize the selectivity of the Fischer-Tropsch synthesis to the production of high-value liquid hydrocarbons, such as hydrocarbons with five or more carbon atoms per hydrocarbon chain.
U.S. Pat. No. 4,659,681 issued on Apr. 21, 1987, describes the laser synthesis of iron based catalyst particles in the 1-100 micron particle size range for use in a slurry reactor for Fischer-Tropsch synthesis.
U.S. Pat. No. 4,619,910 issued on Oct. 28, 1986, and U.S. Pat. No. 4,670,472 issued on Jun. 2, 1987, and U.S. Pat. No. 4,681,867 issued on Jul. 21, 1987, describe a series of catalysts for use in a slurry Fischer-Tropsch process in which synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. Reactions of the catalyst with air and water and calcination are specifically avoided in the catalyst preparation procedure. The catalysts are activated in a fixed-bed reactor by reaction with CO+H
2
prior to slurrying in the oil phase in the absence of air.
Catalyst supports for catalysts used in Fischer-Tropsch synthesis of hydrocarbons have typically been oxides (e.g., silica, alumina, titania, zirconia or mixtures thereof, such as silica-alumina). It has been claimed that the Fischer-Tropsch synthesis reaction is only weakly dependent on the chemical identity of the metal oxide support (see E. Iglesia et al. 1993, In: “Computer-Aided Design of Catalysts,” ed. E. R. Becker et al., p. 215, New York, Marcel Dekker, Inc.). The products prepared by using these catalysts usually have a very wide range of molecular weights.
U.S. Pat. No. 4,477,595 discloses ruthenium on titania as a hydrocarbon synthesis catalyst for the production of C
5
to C
40
hydrocarbons, with a majority of paraffins in the C
5
to C
20
range. U.S. Pat. No. 4,542,122 discloses a cobalt or cobalt-thoria on titania having a preferred ratio of rutile to anatase, as a hydrocarbon synthesis catalyst. U.S. Pat. No. 4,088,671 discloses a cobalt-ruthenium catalyst where the support can be titania but preferably is alumina for economic reasons. U.S. Pat. No. 4,413,064 discloses an alumina supported catalyst having cobalt, ruthenium and a Group 3 or Group 4 metal oxide, e.g., thoria. European Patent No. 142,887 discloses a silica supported cobalt catalyst together with zirconium, titanium, ruthenium and/or chromium.
International Publication Nos. WO 98/47618 and WO 98/47620 disclose the use of rhenium promoters and describe several functions served by the rhenium.
U.S. Pat. No. 5,248,701 discloses a copper promoted cobalt-manganese spinel that is said to be useful as a Fischer-Tropsch catalyst with selectivity for olefins and higher paraffins.
Despite the vast amount of research effort in this field, promoted Fischer-Tropsch catalysts using aluminum fluoride or fluorided alumina supports are not known in the art. There is still a great need to identify new catalysts for Fischer-Tropsch synthesis, particularly catalysts that provide high C
5
+
hydrocarbon selectivities to maximize the value of the hydrocarbons produced and thus the process economics.
SUMMARY OF THE INVENTION
This invention provides a process for producing hydrocarbons, and a method for p
Chao Wenchun
Makar Kamel M.
Manzer Leo E.
Subramanian Munirpallam A.
ConocoPhillips Company
Parsa J.
Rose Conley
LandOfFree
Fischer-tropsch processes and catalysts with promoters does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fischer-tropsch processes and catalysts with promoters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fischer-tropsch processes and catalysts with promoters will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3236524