Data processing: artificial intelligence – Neural network – Neural simulation environment
Reexamination Certificate
2001-07-23
2003-04-29
Davis, George B. (Department: 2121)
Data processing: artificial intelligence
Neural network
Neural simulation environment
C706S060000, C706S913000
Reexamination Certificate
active
06556981
ABSTRACT:
BACKGROUND
These inventions relate to the field of fire fighting systems and methods, and more specifically, to comprehensive fire fighting systems and methods that automatically optimize fire fighting activities by integrating image acquisition and analysis, expert systems using fuzzy logic rule-based decision making, satellite positioning and tracking systems and advanced communication methods.
Fires frequently result in significant disasters that cause loss of personal property and human life. The failure to timely detect fires and optimally control fire fighting activities causes the unnecessary loss of considerable natural resources. Proper management of fires is complicated by the large and remote areas in which the fires often occur, the difficulty in detecting the fires at early stages, and problems associated with efficient dispatching and tracking of fire fighting equipment and crews. The Western United States, for example, is particularly vulnerable to destruction by fire, due to its wide expanses of open forest areas in mountainous terrains and its frequently dry condition. In addition, weather conditions such as high winds contribute to the rapid spread of fires, resulting in the destruction of large areas.
Fire fighters have adopted several modern technologies to assist in the coordination of fire fighting activities. For example, the use of two way radios enables fire fighters to remain in close communication while coordinating fire fighting efforts. Helicopters and aircraft frequently assist in the attempt to contain fire damage by dropping water or other fire fighting agents on portions of the fire. More recently, efforts were reported that use airborne video cameras to monitor areas of a fire and that provide real-time video imaging signals to assist fire fighters in assessing the extent and location of fires. Positioning systems such as GPS (Global Positioning System) have also been suggested for use in data logging images of fires, fire perimeters, dozer lines, boundaries, etc. see “Real Time Image Analysis And Visualization From Remote Video For Fire And Resource Management,” Advanced Imagery, May 1994, at pp. 30-32, incorporated herein by reference.
The efforts described above represent important advances in fire fighting technology. However, they do not take full advantage of modern expert computer systems, satellite positioning technology and communication methods. Importantly, prior fire fighting systems and methods fail to quickly detect fires, and to optimize and organize the entire fire fighting effort. The need exists for fire fighting systems and methods that take advantage of modern computer imaging and global positioning technology, coupled with expert system decision logic (e.g., fuzzy logic), to assist in quickly detecting fires and organizing and optimizing the overall fire fighting effort.
OBJECTS OF THE INVENTION
It is an object of this invention to provide new and improved fire fighting systems and methods that integrate expert system computer technology, image analysis, modern communication and networking operations, and precise global positioning technology to optimize fire fighting activities.
It is another object of this invention to provide coordinated fire fighting systems and methods that detect and specifically locate fires using satellite, airborne and fixed-mount reconnaissance of selected geographic areas.
It is another object of this invention to provide coordinated fire fighting systems and methods using remote control pilotless drone reconnaissance.
It is another object of this invention to provide coordinated fire fighting systems and methods using expert systems implemented with fuzzy logic rules.
It is another object of this invention to automatically optimize fire fighting activities using fuzzy logic analysis of numerous pertinent fire control factors, such as specific characteristics about the fire, surrounding geography, inhabitants or population near the fire, weather, and the availability and known location of the fire fighting resources.
It is another object of this invention is to optimize fire fighting activities by continuously tracking and monitoring the location of fire fighting resources.
It is another object of this invention is to optimize fire fighting activities by continuously tracking and monitoring changing fire or weather conditions.
It is another object of this invention to track fire fighting resources using modern locating systems such as Global Positioning System or the Global Orbiting Navigational System (GLONASS).
It is another object of this invention assist fire fighters in prioritizing areas in which to concentrate fire fighting resources, including, for example, by considering fire control factors such as weather, terrain, population, property value, and the availability and location of known fire fighting resources, and further, to optimize and adjust fire fighting priorities on a real time basis as conditions change.
It is another object of this invention to consider danger to persons or particularly valuable properties or resources in prioritizing fire fighting decisions.
It is another object of this invention to continually acquire and update data defining the fire and the location of fire fighting resources as conditions change to optimize fire fighting activities.
SUMMARY OF INVENTION
The above and other objects are achieved in the present invention, which provides totally integrated fire detection systems and methods that use advanced computer, satellite positioning, and communication systems to quickly analyze a large amount of data to detect a fire and optimize an overall fire fighting effort.
The integrated fire detection and fighting systems and methods of the present invention use earth satellites, piloted and drone aircraft and fixed mount cameras to periodically generate and capture images of selected geographic regions. The video images are computer analyzed to detect and precisely locate a fire at its earliest stages. Computer image analysis is used to fully characterize the fire, such as identifying its extent, intensity, flame fronts and rate of growth, etc. Expert system computers based on fuzzy logic rules analyze all known variables important to determining a fire fighting strategy. For example, the characteristics of the fire, the characteristics of the region burning (i.e, its terrain, the existence of natural fire barriers, its combustibility, value, population, etc.), actual and predicted weather conditions, and the availability, type and location of fire fighting resources are all analyzed in accordance with optimized fuzzy logic rules. The results of the fuzzy logic analysis it of all available fire control factors are used to optimize fire fighting decisions, and to update detailed graphics displays.
The integrated fire detection and fighting systems and methods of the present invention use advanced image gathering and expert system analysis to continuously update and optimize fire fighting decisions as conditions change. Continuously during the fire fighting efforts, images of the fire and surrounding terrain are obtained and communicated to image analysis computers. The image analysis computers evaluate the image data, and other pertinent characteristics, to maintain a fully updated database that characterizes critical aspects of the ongoing fire. Advanced weather gathering tools update weather conditions pertinent to or likely to impact the fire, and communicate that data to the fire control center. The fire control center uses advanced satellite positioning and associated communication systems to continuously monitor the precise location of all deployed and available fire fighting resources. The fire control center includes an expert system that uses fuzzy logic rules to continuously evaluate the updated characteristics of the fire, weather, and terrain, along with the location and type of available fire fighting resources, to continuously optimize fire fighting decisions. A graphics monitor is continuously updated to indicate the location and characteristics
Lemelson Jerome H.
Pedersen Robert D.
Davis George B.
Rudy Douglas W.
LandOfFree
Fire detection systems and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fire detection systems and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fire detection systems and methods will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3112353