Finishing agents and method of using the same

Coating processes – Particles – flakes – or granules coated or encapsulated – Solid encapsulation process utilizing an emulsion or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S216000, C427S221000, C427S222000, C427S387000

Reexamination Certificate

active

06287633

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to finishing agents and methods of using the same. More particularly, the invention relates to finishing agents and methods for forming a durable ultra thin, water and oil repelling, chemically adsorbed protecting film on the surface of a substrate.
BACKGROUND OF THE INVENTION
Conventionally, a finishing agent has been used for glazing agent or the like. The finishing agents of the prior art are typically solid or emulsified, and generally comprise the mixture of a petroleum solvent, silicone, wax, or lower alcohol, with an abrasive material (e.g. Japanese Laid-Open Patent (Tokkai-Hei) No.2-151676 and No.2-170878). Moreover, a finishing agent using a silane compound containing fluorine has also been suggested (e.g. Japanese Laid-Open Patent (Tokkai-Hei) No.3-100060 and EP Laid-Open No. 0577951A1).
The finishing agents of the prior art have weak water repelling and lustering properties, and the protecting films of the prior art do not have suitable durability and solidity since they are merely applied to the substrate surfaces. In addition, they possess only a minor oil repelling property. According to the method suggested in Japanese Laid-Open Patent (Tokkai-Hei) No.3-100060 or EP Laid-Open No. 0577951A1, films cannot be easily formed because the reaction of alkoxysilane surface active agent is slow. While a method of using dealcohol catalyst is possible, the surface active agent cross-links with moisture in the air and lose its activity. In other words, if a finishing agent includes water, the surface active agent cross-links before reacting with the surface of a substrate so that the reaction of the surface active agent on the solid surface of the substrate is prevented, making it difficult to form a chemically adsorbed film. Moreover, if an alkoxysilane surface active agent and acid catalyst are used, it is difficult to blend both of them at the same time. Thus, the two liquids, the alkoxysilane surface active agent and the acid catalyst, must be made separately. The method of using such liquids is also difficult.
An objective of the invention is to provide a finishing agent and a method of using the same, wherein the reaction of alkoxysilane surface active agent is promoted by using a silanol condensing catalyst, and wherein the finishing agent is efficiently and reasonably reacted to the surface of the substrate by avoiding the influence of moisture on the surface active agent. Another objective of the invention is to provide a finishing agent and a method of using the same in order to form the protecting film not only having a excellent lustering property and a water repelling property and not only applied to the surface of a substrate, but also having durability and hardness and further having water and oil repelling by chemically bonding to the surface of a substrate. In another embodiment, a protective film having excellent heat, weather and abrasion resistance is provided by applying thinly and adhesively a fluorocarbon polymer film to the substrate. The overcoat can be employed in the production of household electric goods, automobile, industrial equipments, glass, mirrors, lenses for glasses, interior goods, apparel goods and the like.
SUMMARY OF THE INVENTION
In one aspect, the present invention relates to a first finishing agent comprising an alkoxysilane surface active agent, a silanol condensing catalyst and a nonaqueous liquid or solid medium.
Preferably, the finishing agent comprises an alkoxysilane surface active agent in an amount of 0.1 to 30 wt. % (% by weight), a silanol condensing catalyst in an amount of 0.0001 to 20 wt. % and a nonaqueous liquid or solid medium in an amount of 5 to 99.8999 wt. % to 100 wt. % of total weight of the finishing agent. Optional additives for the finishing agent include coloring agents, fillers, perfumes or the like.
The finishing agent also preferably includes an abrasive material. In this embodiment of the invention, the alkoxysilane surface active agent is preferably present in an amount of 0.1 to 30 wt. %, the silanol condensing catalyst is present in an amount of 0.0001 to 20 wt. %, the nonaqueous liquid and solid medium is present in an amount of 5 to 99.8999 wt. % and the abrasive material is present in an amount of more than 0 not more than 60 wt. % to 100 wt. % of the total finishing agent. Optional additives for this embodiment include coloring agents, fillers, perfumes or the like.
In another aspect of this invention, at least one of the silanol condensing catalyst and the alkoxysilane surface active agent is microencapsuled. Such an arrangement minimizes or even prevents contact of these components with moisture in the air, thus, preservation time of the finishing agent is prolonged.
The silanol condensing catalyst is preferably at least one material selected from the group consisting of metal carboxylate, carboxylic acid ester salt, metal carboxylate polymer, metal carboxylate chelate, titanic ester and titanic ester chelate.
It is preferable in this invention that the moisture content is not greater than 10 ppm. If the moisture content is more than 10 ppm, strong odor of chlorine may be generated.
According to another aspect of the invention, a second finishing agent is provided. This finishing agent comprises an alkoxysilane surface active agent, a silanol condensing catalyst and a liquid or solid medium and at least one of an alkoxysilane surface active agent and a silanol condensing catalyst is microencapsuled. Furthermore, the finishing agent may include an abrasive material and/or calcium carbonate.
It is preferable in the first or second finishing agent of the invention that the viscosity of a liquid or solid medium is not less than 1000 cps (where cps represents centipoise) at 25° C. It is further preferable that the viscosity is in the range of 1000-5000 cps.
It is preferable in the finishing agent that the liquid or solid medium comprises a mixture of (i) a medium having a boiling point of 200° C. or more and (ii) a medium having a boiling point of 100° C.-200° C.
In this invention, if the alkoxysilane surface active agent comprises a fluorocarbon group, a finished film can have both water and oil repelling property. For such alkoxysilane surface active agents, such as CF
3
—(CF
2
)
n
—(R)
m
—SiX
p
(OA)
3−p
can be used, wherein n represents 0 or an integer; R represents an alkylene, vinylene, ethynylene, arylene group or a molecular chain comprising a silicon or oxygen atom; m represents 0 or 1; X represents H atom, an alkyl, alkoxyl group or a molecular chain comprising fluoroalkyl or fluoroalkoxyl groups; A represents an alkyl group or fluoroalkyl group; and p represents 0, 1 or 2.
It is preferable in the finishing agent that the abrasive material comprises at least one component comprising particles smaller than 10 &mgr;m in diameter, which are selected from the group consisting of alumina, calcium oxide, calcium carbonate, silicon carbide, boron carbide, chromium oxide, iron oxide, synthetic diamond and fine-grain silica. It is particularly preferable that the abrasive materials have an average particle size of 0.2-3 &mgr;m.
A method of using the first finishing agent of the invention comprises the steps of applying a finishing agent comprising an alkoxysilane surface active agent, a silanol condensing catalyst and a nonaqueous liquid or solid medium to the surface of a substrate, reacting an active hydrogen of the surface of a substrate with the alkoxysilane surface active agent and the silanol condensing catalyst, and removing unreacted finishing agent from the surface of a substrate. The method can further comprise a step of washing the surface of a substrate thoroughly prior to application of the agent. The molecular film having a well-ordered molecular orientation can be formed by removing excess unreacted finishing agents from the substrate surface after reacting the active hydrogen with the alkoxysilane surface active agent and silanol condensing catalyst for sufficient period of time. Furthermore, by using a nonaqueous liquid or solid me

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Finishing agents and method of using the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Finishing agents and method of using the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Finishing agents and method of using the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2445216

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.