Food or edible material: processes – compositions – and products – Addition of dye or pigment – including optical brightener
Reexamination Certificate
2001-10-23
2003-10-21
Bhat, Nina (Department: 1761)
Food or edible material: processes, compositions, and products
Addition of dye or pigment, including optical brightener
C426S330300, C426S590000, C426S540000, C426S541000, C424S442000, C424S451000, C514S544000
Reexamination Certificate
active
06635293
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to food, beverage, and personal care product additives and, more specifically, to finely dispersed carotenoid suspensions for use in supplementing foods, beverages, and personal care products with carotenoids, for use in coloring foods and beverages, and to a process for their preparation.
2. Background of the Prior Art
Carotenoids are naturally-occurring yellow to red pigments of the terpenoid group that can be found in plants, algae, and bacteria. Carotenoids include hydrocarbons (carotenes) and their oxygenated, alcoholic derivatives (xanthophylls). They include actinioerythrol, astaxanthin, bixin, canthaxanthin, capsanthin, capsorubin, &bgr;-8′-apo-carotenal (apo-carotenal), &bgr;-12′-apo-carotenal, &agr;-carotene, &bgr;-carotene, “carotene” (a mixture of &agr;- and &bgr;-carotenes), &ggr;-carotene, &bgr;-cryptoxanthin, lutein, lycopene, violerythrin, zeaxanthin, and esters of hydroxyl- or carboxyl-containing members thereof. Many of the carotenoids occur in nature as cis- and trans-isomeric forms, while synthetic compounds are frequently racemic mixtures. The carotenes are commonly extracted from plant materials. For example, lutein extracted from marigold petals is widely used as an ingredient in poultry feed where it adds color to the skin and fat of the poultry and to the eggs produced by the poultry. Many of the carotenes are also made synthetically; much of the commercially available &bgr;-carotene has been made through synthesis.
Carotenoids are used in the pharmaceutical industry and as ingredients in nutritional supplements, most commonly to date because of their pro-vitamin A activity. They have been extensively studied as antioxidants for protection against cancer and other human and animal diseases. Among the dietary carotenoids, the focus has been on &bgr;-carotene. More recently, research has begun to elicit the broad role that other carotenoids play in human and animal health. The xanthophylls in particular have been shown to possess strong antioxidant capabilities and may be useful in reducing the risk of disease. For example, the consumption of lutein and zeaxanthin has been identified as leading to a 57 percent reduction in age-related macular degeneration (Seddon et al., 1994.
J. Amer. Med. Assoc.
272(18): 1413-1420). Lycopene has been identified as a nutrient that is active in reducing the risk of prostate cancer.
Carotenoids have also been of wide interest as a source of added color for food and drink products and many efforts have been made to attempt to use them as “natural” colorants for foods and beverages. However, their insolubility in water, their low solubility in fats and oils, high melting points, and their sensitivity to oxidation has limited their use, particularly in water-based products such as beverages and juices and products to which water is to be added.
Current processes for incorporating carotenoids into water-based beverages or foods involve the use of organic solvents, oils with emulsifiers, high heating, or high-shear mixing. Many of the current processes, particularly in beverages, produce a deposit of the carotenoids around the perimeter of the container in the region of the surface of the treated food or beverage, known as “ringing.” Optical clarity is a critical characteristic for many beverage compositions. Various fruit drinks, fruit juices and fortified water drinks have included terms such as “crystal clear” and “fresh” to distinguish their image and marketability. Traditionally, this clarity has been difficult to achieve when carotenoids are added to these aqueous compositions. The use of emulsifiers and oil for the incorporation of carotenoids will commonly result in cloudiness of the final aqueous composition.
In U.S. Pat. No. 3,998,753, a dispersible carotenoids product is made by forming a solution of carotenoids and a volatile organic solvent and emulsifying the solution with an aqueous solution containing sodium lauryl sulfate using high speed mixing with high shear. The volatile solvent is removed by heating the emulsion while maintaining the high speed mixing with high shear.
In U.S. Pat. No. 5,532,009, a powdered water soluble &bgr;-carotene composition is prepared by initially forming an aqueous solution of cyclodextrin. The solution is heated to between 45 and 95° C. Separately, &bgr;-carotene is dissolved in an organic solvent to form a supersaturated solution of &bgr;-carotene. The &bgr;-carotene solution is added to the hot cyclodextrin solution with rapid stirring. Upon drying, the powders are added to non-digestible fats, including polyol fatty acid polyesters and poly glycerol esters.
In U.S. Pat. No. 5,607,707, an antioxidant is dispersed in an emulsifier while heating to 40° C. The carotenoid is then added and the temperature is raised to between 80 and 200° C. while stirring. The mixture is then added to water (at least 95° C.) while stirring.
In U.S. Pat. No. 5,895,659, carotenoid suspensions are prepared by dissolving the carotenoid in a volatile, water-miscible organic solvent at preferably between 150 and 200° C. within less than 10 seconds and immediately thereafter mixing the solution with an aqueous medium at from 0 to 90° C. An emulsifier is present either in the organic solvent or the aqueous medium or both.
SUMMARY OF THE INVENTION
The present invention involves the dispersion of carotenoids into water-based systems, such as food, beverages and personal care products. A carotenoid-containing product for addition to these water-based systems is prepared by adding an emulsifier to water. A small quantity of a food-grade alcohol may be added to reduce viscosity. An antioxidant may be added to help in preventing oxidation of the carotenoid. An anti-foaming agent may be added to decrease foaming of the water and emulsifier during processing of the product and during processing of a food or beverage incorporating the product. The carotenoid is then added while mixing. No elevated temperatures, high-shear mixing, or organic solvents are required to form the product.
In a preferred embodiment of the invention, the emulsifiers are selected from cationic, anionic, and non-ionic emulsifiers having a hydrophilic/lipophilic balance (HLB) of between about 12 and about 20, and preferably between about 15 and 18. Examples of suitable emulsifiers include sucrose fatty acid esters (SFAE) and poly glycol esters (PGE). The SFAE and PGE emulsifiers are preferred also because they have very little taste. Emulsifiers may be used singly or in combination; in particular, emulsifiers having diverse HLB numbers may be advantageously used in combination with each other. The amount of emulsifier in the composition is selected as an amount which will vary depending upon which form of carotenoid is used, its method of preparation, and how much is included. For example a dispersion of lutein in oil will require a higher concentration of emulsifier or blend of emulsifiers to disperse the oil and the carotenoid than the corresponding quantity of crystalline lutein.
The water and emulsifier mixture, under certain circumstances, may become too viscous for efficient processing. In these circumstances, a food grade alcohol, such as ethanol, may be added to reduce the viscosity. It is preferred that no more than about 4 weight percent alcohol be used. In commercial processing of the product of the present invention, it is greatly preferred not to include the alcohol in the mixture since it adds a flammable substance to an otherwise non-flammable mixture and thus creates safety issues which add substantially to the costs associated with carrying out the process.
Any suitable commercially available anti-foam agent may be added to the mixture. Examples of suitable anti-foam agents include Silicone AF-100 FG (Thompson-Hayward Chemical Co.), ‘Trans’ Silicone Antifoam Emulsion (Trans-Chemco, Inc.), and 1920 Powdered Antifoam (Dow Corning Chemical). The amount of the anti-foam agent added is kept to the minimum required to prevent excess
Fullmer Linda A.
Newman Anthony W.
Newman Jerry L.
Stomp Robert S.
Bhat Nina
Davis Law Firm
Herink Kent
Kemin Foods, L.C.
Rosenberg Daniel
LandOfFree
Finely dispersed carotenoid suspensions for use in foods and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Finely dispersed carotenoid suspensions for use in foods and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Finely dispersed carotenoid suspensions for use in foods and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3113752