Fin and tube for high-temperature heat exchanger

Metal treatment – Stock – Nickel base

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C148S428000, C420S445000, C420S460000, C165S905000

Reexamination Certificate

active

06808570

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a fin and to a tube which are used in apparatuses for various high-temperature heat exchange processes, such as the steam reforming processes of fuel cells, recovery of heat from waste gas in solid electrolyte fuel cells, regenerators of micro gas turbines and heat recovery in incinerators (hereinafter generically referred to as a high-temperature heat exchanger).
2. Prior Art
Because all of the steam reforming processes of fuel cells, solid electrolyte fuel cells, regenerators of micro gas turbines, high-temperature incinerators in which the generation of dioxins is minimized, etc., are conducted at high temperatures, it is necessary to install auxiliary equipment to recover or recycle heat after use at high efficiency in order to ensure overall heat efficiency in the overall process. These apparatuses for heat recovery or recycling are auxiliary equipment and, therefore, it is necessary to reduce the size thereof to save space as much as possible. Furthermore, the auxiliary equipment is made of stainless steel or heat-resistant nickel-based alloy which is superior in oxidation resistance at high temperatures, and in particular, fins and tubes in a high-temperature heat exchanger exposed to a high-temperature atmosphere containing a large amount of steam, which has the harshest effects, must be fabricated from materials which are superior in oxidation resistance at high temperatures.
While it is particularly important that materials of fins and tubes in this high-temperature heat exchanger be superior in oxidation resistance at high temperatures, they are required to further combine characteristics such as excellent workability, good thermal conductivity, and excellent solderability or weldability because these materials must be rolled into thin sheets.
Stainless steels, nickel-based alloys, etc., which are superior in corrosion resistance at high temperatures are used as the materials for fins and tubes in this high-temperature heat exchanger. It is known that, for example, the following materials are used: a steel sheet for a heat exchanger which is superior in workability and oxidation resistance at high temperatures and which contains, by mass % (hereinafter “%” indicates “mass %”), not more than 0.015% of C, not more than 0.50% of Si, 0.05 to 0.40% of Mn, not more than 0.030% of P, not more than 0.010% of S, 0.50 to 5.0% of Cr, 0.03 to 0.20% of Ti, 0.0003 to 0.0015% of B, not more than 0.0060% of N, and the balance Fe and unavoidable impurities (refer to the Japanese Patent Laid-Open No. 63-230853), a nickel-based alloy which is superior in corrosion resistance at high temperatures which contains not more than 0.05% of C, 1.5 to 4.5% of Si, not more than 1.0% of Mn, not more than 0.03% of P, not more than 0.03% of S, 35.0 to 75.0% of Ni and 12.0 to 25.0% of Cr, with Ni and Si so as to fulfill the relationship 3Ni≧105 +20Si, and the balance Fe and unavoidable impurities (refer to Japanese Patent Laid-Open No. 3-100134), etc.
However, because fins and tubes fabricated from such stainless steels have insufficient oxidation resistance in high-temperature, high-concentration steam atmospheres, it is desirable that fins and tubes in a high-temperature heat exchanger as described above be fabricated from a nickel-based alloy having better oxidation resistance at high temperatures. On the other hand, although fins and tubes fabricated from the above-described conventional nickel-based alloy is superior in corrosion resistance at high temperatures, its workability is not sufficient, and furthermore, a high-temperature heat exchanger provided with fins and tubes made of the above-described conventional nickel-based alloy has a problem in that the heat exchange efficiency decreases with increasing period of service.
SUMMARY OF THE INVENTION
Therefore, the inventors conducted research in order to clarify the causes of the above, and the following results were obtained.
(a) In a high-temperature heat exchanger incorporating fins and tubes made of the above-described conventional nickel-base alloy which is superior in oxidation resistance at high temperatures, oxide scale having lower thermal conductivity is likely to form on the surfaces of the fins and tubes when the high-temperature heat exchanger is used for a long period of time. When adhering oxide scale having lower thermal conductivity forms a thick layer on the surfaces of the fins and tubes, the heat exchange efficiency of the heat exchanger decreases.
(b) However, among conventionally known heat-resistant nickel-based alloys, a nickel-based alloy containing 2.0 to 5.0% of Al and the balance Ni and unavoidable impurities (hereinafter referred to as an Al-containing nickel-based alloy) is superior in oxidation resistance at high temperatures and strength at high temperatures and has excellent thermal conductivity and plastic workability, and furthermore, oxide scale is less likely to form on the surface of this Al-containing nickel-based alloy. Therefore, oxide scale does not form a thick layer on the surfaces of fins and tubes made of this Al-containing nickel-based alloy and, therefore, the decrease in heat exchange efficiency is minimal even when a high-temperature heat exchanger using fins and tubes formed from this Al-containing nickel-based alloy is used for a long period of time.
(c) Strength at high temperatures and oxidation resistance at high temperatures are further improved in an Al-containing nickel-based alloy which contains 2.0 to 5.0% of Al and further contains as required one or more selected from the group consisting of 0.1 to 2.5% of Si, 0.8 to 4.0% of Cr and 0.1 to 1.5% of Mn, and the balance being Ni and unavoidable impurities.
The present invention was made on the basis of the above-described results of the research and has the following features.
(1) a fin for a high-temperature heat exchanger formed from a nickel-based alloy containing 2.0 to 5.0% of Al, the balance being Ni and unavoidable impurities;
(2) a tube for a high-temperature heat exchanger formed from a nickel-based alloy containing 2.0 to 5.0% of Al, the balance being Ni and unavoidable impurities;
(3) a fin for a high-temperature heat exchanger formed from a nickel-base alloy containing 2.0 to 5.0% of Al, and further containing one or more selected from the group consisting of 0.1 to 2.5% of Si, 0.8 to 4.0% of Cr and 0.1 to 1.5% of Mn, the balance being Ni and unavoidable impurities; and
(4) a tube for a high-temperature heat exchanger formed from a nickel-based alloy containing 2.0 to 5.0% of Al, and further containing one or more selected from the group consisting of 0.1 to 2.5% of Si, 0.8 to 4.0% of Cr and 0.1 to 1.5% of Mn, the balance being Ni and unavoidable impurities.
Next, the reasons for the above-described limitations on the chemical compositions of the nickel-based alloy from which the fin and tube for a heat exchanger of the invention are formed will be described below.
(a) Al
Al forms an alumina film on the surface of the nickel-based alloy and the rates of formation of oxide scale are low on the fin and in the tube for a heat exchanger fabricated from this nickel-based alloy, with the result that decreases in the heat exchange efficiency of the heat exchanger are small even when the heat exchanger is used for a long period of time. However, if the Al content is less than 2.0%, an adequate alumina film is not formed, and hence the desired effects cannot be obtained. On the other hand, if the Al content exceeds 5.0%, hot workability decreases because of the precipitation of the &ggr;′ phase (an Ni
3
Al intermetallic compound) on the matrix, and working becomes difficult. Thus, these Al components are undesirable. Accordingly, the specified Al content is in the range of 2.0 to 5.0% and preferably in the range of 3.6 to 4.4%.
(b) Si
Si, which has the function of improving oxidation resistance at high temperatures, is added as required. However, if the Si content is less than 0.1%, the desired effect of the above-described functi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fin and tube for high-temperature heat exchanger does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fin and tube for high-temperature heat exchanger, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fin and tube for high-temperature heat exchanger will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3281111

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.