Liquid purification or separation – Filter – With flow controller for material being treated
Reexamination Certificate
2000-11-24
2003-06-10
Kim, John (Department: 1723)
Liquid purification or separation
Filter
With flow controller for material being treated
C210S232000, C210S240000, C210S321600, C210S422000, C210S433100, C210S510100
Reexamination Certificate
active
06575308
ABSTRACT:
THIS INVENTION relates to a filtration system and a filter unit suitable for microfiltration, ultrafiltration or reverse osmosis.
According to the invention there is provided a filtration system which comprises a filter unit having a hollow housing which encloses at least one filter element, the filter unit having a feed fluid inlet opening into the interior of the housing and communicating with an upstream side of each filter element, a retentate outlet leading from said interior of the housing and communicating with said upstream side of each filter element, and a permeate outlet leading from the interior of the housing and communicating with a downstream side of each filter element, said permeate outlet being isolated from the retentate outlet and from the inlet by the filter element or elements, and the retentate outlet being spaced from the inlet and in communication therewith, and the system including at least one bundle made up of a plurality of releasably interconnected modular members, which bundle forms a flow control unit for controlling fluid flow through the filter unit from its feed fluid inlet to its permeate outlet.
In the various embodiments of the invention described hereunder, various combinations of features are described or defined as simultaneously forming part of the invention. It is explicitly noted, however, that it is not essential that the features of these combinations be used simultaneously, and the invention contemplates that any one or more of such features can be omitted or altered, while one or more of the remainder are retained. In particular, any feature may be omitted, without enlarging the invention of extending its scope, provided that the features defined hereinabove are present.
The system can thus be regarded as including one or more bundles, at least one of which is made up of a plurality of interchangeable modules in the form of modular members constructed and arranged to form a flow control unit for controlling fluid flow through the filter unit from its feed fluid inlet to its permeate outlet. At least some of said modular members will respectively be of different functions and constructions from the remainder of said modular members; and the flow control unit will be arranged to control flow through at least one of said inlet and outlets of the housing. By ‘modular’ is meant that the modular members or modules are capable of being interchangeably nested or stacked, face-to-face if they are flattened in shape, or end-to-end if they are elongate in shape, to form a bundle or stack, each member being of the same outline, when viewed in end elevation, so that the stack or bundle has a substantially constant cross-sectional outline along its length.
The flow control unit may be associated with the feed fluid inlet to the housing interior and with the retentate outlet from said interior, so that it controls the rate of fluid flow from the feed fluid inlet to the retentate outlet. Instead, the flow control unit may be associated with the permeate outlet from the interior of the housing, so that it control the rate of fluid flow out of the retentate outlet. In a particular construction the filtration system may have two flow control units, one associated with the feed fluid inlet to the housing interior and with the retentate outlet of the housing interior, on the one hand, and the other associated with the permeate outlet from the housing interior, on the other hand, so that there is control of the rate of fluid flow both from the rear fluid inlet to the retentate outlet, and fluid flow out of the retentate outlet. In other words, the system may include two bundles of modular members, which bundles respectively form two flow control units, one for controlling fluid flow from the feed fluid inlet to the retentate outlet, and another for controlling fluid flow through the permeate outlet.
Each flow control unit may be separate from the filter unit, being connected thereto by a fluid flow line, such as a pipeline, in which case each flow control unit may be physically remote from the filter unit. Preferably, however, at least one, and conveniently each, flow control unit is mounted on the housing or forms part of the housing. Thus, each bundle of modular members may be mounted on the housing.
The housing may be elongated, being open at at least one end thereof, each open end of the housing being provided with an end closure, and at least one said end closure may be in the form of a said flow control unit as described above, so that each interchangeable modular member can be regarded as a closure member forming part of a said end closure.
The housing may be in the form of a cylindrical hollow tube of circular or other suitable cross-section, eg of stainless steel, open at both ends, so that the filter unit has a said end closure at each end thereof, the end closures being respectively bolted to flanges provided therefor, at opposite ends of the tube, by a plurality of bolts, circumferentially spaced about the housing and holding the end closures up against opposite ends of the housing, to close the housing. In another embodiment, wherein the filter unit is of relatively short length, bolts extending from one end closure to the other may be used to hold the end closures up against the respective ends of the housing, to close the housing. In each case, however, the bolts conveniently act to hold the modular members of each bundle together to form a flow control unit which acts as a said end closure for the tube.
In each case, in general, the housing may be tubular, having at least one open end closed by an end closure in the form of a said bundle of modular members forming a flow control unit; and the housing may have two open ends, each closed by an end closure, at least one of the end closures being in the form of a said bundle of modular members forming a flow control unit.
More particularly, said flanges and end closures may be of square (or other suitable) outline, having bolt holes at the corners thereof, there being four bolts passing through said bolt holes and bolting the end closures to the flanges. The fluid inlet and the outlets preferably each pass through a said modular member; and the modular members will have the same outline as the end closures, being interchangeably stackable against one another in series, face-to-face. Thus, each modular member may be in the form of a square plate, of lesser or greater thickness as required for its function and construction, and having bolt holes at its corners. The filter unit will thus have, in this case, an end closure at each end of the housing, at least one said end closure being of composite construction and being made up of a plurality of said modular members, stacked face-to-face, sandwich fashion.
The end closures may each be provided with at least one sealed coupling passage to enable a plurality of filter units to be coupled together via the sealed coupling passage. Such plurality of filter units may be coupled together into any desired configuration, thereby to provide for series flow or for parallel flow or for a combination thereof, ie series/parallel flow or cascade-type flow.
Typically, there may be a single filter element of porous sintered ceramic material, the filter element having a plurality of passages in its interior, the passages extending alongside one another and being transversely spaced from one another, at least one of the passages being a filtration passage in communication with the feed fluid inlet and with the retentate outlet and at least one of the passages being a drainage passage, and each drainage passage being in communication with the permeate outlet and being isolated from each filtration passage. Instead, however, there may be a plurality of the filtration passages, the filter material acting as a filter membrane support and each filtration passage being lined with a filter membrane, there being a plurality of the drainage passages and the filter element having an outer surface the major part of which faces into a space between the filter element and
Fuls Paul Fritz
Joubert Andre Keith
Kapp Diederik Arnoldis
Fulbright & Jaworski L.L.P.
Kim John
Technology Finance Corporation (Proprietary) Limited
LandOfFree
Filtration system suitable for microfiltration,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Filtration system suitable for microfiltration,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Filtration system suitable for microfiltration,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3087393