Filtration system for collecting and filtering particles and...

Gas separation: processes – With control responsive to sensed condition – Pressure sensed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C095S090000, C095S287000, C096S113000, C096S117000, C096S138000, C096S142000, C096S418000, C096S421000, C096S423000, C055S323000, C055S328000, C055S332000, C055S356000, C055S422000, C055S471000, C055S485000

Reexamination Certificate

active

06387156

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to collecting laser ablated particles, and more particularly to the filtering of the ablated particles resulting from imaging on a medium with a high energy laser.
BACKGROUND OF THE INVENTION
In the prepress printing industry, it is well known that a substrate such as a film or printing plate (hereinafter collectively referred to as a “medium”) can have an image transferred thereto by selectively “burning” areas of a thermally-sensitive surface of the medium with a high energy laser. This method of imaging is generally referred to as thermal imaging. Typically, the power necessary for such image transfer is attained through the use of a laser light source for emitting the high energy laser beam. The specific chemical makeup of the medium will dictate the required characteristics of the light source which are necessary to adequately burn an image onto the medium. Alternatively, the medium can be manufactured so as to have the appropriate chemical makeup to allow imaging with a light source having predetermined characteristics.
In an internal drum imagesetter or platesetter (hereinafter collectively referred to as an “imager”) a medium is typically positioned on the internal cylindrical surface of the drum prior to imaging. When a laser beam is emitted onto the thermally-sensitive surface of the medium positioned within the imager to form the desired image, laser ablation occurs. Laser ablation refers to the loss or removal of material such as melting or vaporization, due to the application of a high energy laser beam with sufficient energy to expose the medium. The material can effectively explode from the surface of the medium, resulting in ablated particles. Thermal imaging thus generates a gaseous, odorous plume of smoke and dust, which include particulate matter.
Existing filtration systems are designed to collect and filter the ablative particles generated during imaging. However, existing filtration systems have several problems. For example, the filtration system may operate improperly for various reasons, such as improper installation of a filtering element, saturation of a filtering element with ablative particles, or the non-operation of the air mover subsystem to specification. Typically the only way to determine when a conventional filtration system is operating improperly is either to periodically inspect the filtering elements and the air mover or to make such inspections when the quality of the imaged media degrades to an unacceptable level due to the accumulation of ablative particles in the imager. Additionally, in conventional filtration systems ablative particles are prone to enter the surrounding environment when a filter, saturated with ablative particles, is removed from the system for replacement. Such emissions can be undesirable whether or not the escaping particles exceed the permissible exposure levels (PEC) at which the particles can become hazardous to humans. Ablative particles may not be properly filtered by conventional filtration systems during operation of the imager if a filter access door or other opening in the filtration system housing is not properly closed or sealed prior to initiating imaging operations. Additionally, conventional ablative particle filtration systems tend to transmit excessive noise to the surrounding environment during operation.
Therefore a need exists for an improved filtration system for ablative particles.
OBJECTIVES
Accordingly, it is an object of the present invention to provide an improved ablative particle filtration technique.
Additional objects, advantages, and novel features of the present invention will become apparent to those skilled in the art from this disclosure, including the following detailed description, as well as by practice of the invention. While the invention is described below with reference to preferred embodiment(s), it should be understood that the invention is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional implementations, modifications, and embodiments, as well as other fields of use, which are within the scope of the invention as disclosed and claimed herein and with respect to which the invention could be of significant utility.
SUMMARY OF INVENTION
In accordance with the invention, a filtration system includes a filtration unit operable to filter ablative particles generated by thermal imaging of media. The ablative particles may, for example, be generated by an imaging unit. The filtration unit, or in accordance with certain implementations the imaging unit, is configured to transmit a signal corresponding to a parameter representing a current state of the operation of the filtration unit. Advantageously, the filtration unit and/or imaging unit include one or more sensors for generating the transmitted signal.
The parameter could be any appropriate parameter indicative of the unit operation. For example, the parameter could be a pressure related parameter, which might be sensed by a pressure sensor, and is preferably a change in pressure exceeding a predetermined threshold value. The parameter could alternatively be a power parameter, such as voltage or current, such as that flowing through an electro-mechanical sensor, e.g. a switch, when it closes a circuit. A still further alternative could be a light parameter, such as that which might be sensed by an optical sensor. Of course, if desired, signals representing multiple different parameters could be transmitted.
The represented current state of operation preferably includes a current state of one or more filters. For example, the parameter could indicate that a filter is fully saturated, improperly installed and/or not installed. The represented current state of operation could additionally or alternatively be the current state of an air-mover, perhaps indicating that the air mover is improperly operating and not operating at all. Furthermore, the represented current state of operation could also or alternatively be the current state of a filter access door, and could for example be indicative of a filter access door not being properly closed, which may or may not be related to whether or not the door is properly latched. The represented current state of operation might also or alternatively be the current state of a filter clamp, and could for example be indicative of a filter clamp being properly positioned, which may or may not relate to whether or not the clamp is properly locked in position. The represented current state of operation could additionally or alternatively be a positioning of the filtration unit, by for example the operator, relative to the imaging unit.
A processor receives the transmitted signals and generates, responsive to the receipt of the transmitted signal, a signal representing operator information associated with the current state of operation. The represented operator information could, for example, be a warning and/or a process. The warning could simply be a statement such as “filtration unit not properly operating- do not attempt imaging”, or “saturated filter”, or “filter door open”, or “filter not installed”. The process could be instructions for correcting the deficiency in the current state of operation. For example, the signal might represent instructions for changing the appropriate filter, or checking the installation of the appropriate filter, or checking the appropriate filter access door, or checking if the unit is plugged into the power source.
In one embodiment of the invention, the filtration unit, may include a plurality of filters, disposed within a housing, for filtering ablative particles generated by thermal imaging of media. A plurality of sensors, each configured to detect the applicable parameter representing the current state of a respective one of the plurality of filters may also be disposed within the housing.
Advantageously, the embodiment includes a plurality of indicator lights, although this is not mandatory. Beneficially the lights are attached

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Filtration system for collecting and filtering particles and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Filtration system for collecting and filtering particles and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Filtration system for collecting and filtering particles and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2830618

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.