Filtration method of copper electrolyte

Electrolysis: processes – compositions used therein – and methods – Electrolytic coating – Treating process fluid by means other than agitation or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S777000, C210S660000, C210S691000

Reexamination Certificate

active

06616827

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a filtration method of copper electrolyte, and particularly, relates to a technique to improve filtration treatment efficiency with powdery activated carbon.
BACKGROUND ART
It has been conventionally known that electrolytic by-products and dirt in copper electrolyte have significant effects on physical and other properties of electrodeposits obtained by an electrolytic treatment in copper plating, copper electroforming, and so forth. Accordingly, such unnecessary electrolytic by-products and dirt in copper electrolyte are removed by a filtration method, a so-called precoating method with a filtering aid.
In this precoating method, a filtering aid such as diatomaceous earth and pearlite is precoated to a filter element such as filter cloth and a metallic screen. Copper electrolyte is passed thereto, thus depositing electrolytic by-products and dirt in the electrolyte to a surface of a precoated layer as filter cake, for removal. Filtration may be performed highly efficiently without clogging over a long period, and is extremely convenient even when a large volume of electrolyte is treated, so that this filtration method is widely used. The method also has an advantage in that filtration may be performed in accordance with the size and so forth of an object to be removed by appropriately selecting the type, particle size and so forth of a filtering agent.
However, this precoating method has a limitation on filtering minute electrolytic by-products and dirt of 0.5 &mgr;m or less. Also, in removing minute electrolytic by-products and so forth by reducing the particle size of a filtering agent, filtration efficiency sharply declines; in other words, permeation of electrolyte worsens, which is not practically preferable.
As a method to efficiently remove such minute electrolytic by-products and dirt, a filtration method with activated carbon is known. Since activated carbon has an excellent adsorption property, it is suitable for filtering and removing minute electrolytic by-products and so forth. Moreover, when copper electrolyte is treated with activated carbon, the physical property of obtained copper electrodeposits may be controlled, so that activated carbon is often used in a copper electrolytic plating.
As the filtration method with activated carbon, a so-called granular activated carbon having the particle size of about 5 to 60 mesh (2 to 0.25 mm) is filled in a cylindrical treatment column provided with a perforated plate inside, and copper electrolyte is passed through the treatment column for treatment. According to the filtration method with activated carbon, minute electrolytic by-products and dirt may be removed. However, as the electrolyte is continuously passed through, the activated carbon in the treatment column forms sections so that the electrolyte may easily pass through, generating a so-called biased flow, and contact between the granular activated carbon and the copper electrolyte becomes insignificant. Moreover, since activated carbon of a large particle size is used, a contact area with copper electrolyte is small, so that filtration efficiency is not considered satisfactory.
Therefore, in order to make the filtration treatment with activated carbon reliable, a great amount of activated carbon had to be filled in to extend contact time between copper electrolyte and activated carbon. This would lead a cost increase in a copper electrolytic plating, and it is not preferable since the treatment volume of electrolyte increases. Moreover, as a method to increase contact area between copper electrolyte and activated carbon of a small particle size, a so-called powdery activated carbon may also be considered for use. In this case, it is ideal to use activated carbon of a smaller particle size in order to enlarge a contact area. However, as a particle size becomes smaller, powdery activated carbon is likely to be mixed into copper electrolyte, and the mixed powdery activated carbon provides effects on the quality of copper electrodeposits. Moreover, in case of powdery activated carbon, unlike granular activated carbon, it is difficult to fill the powdery activated carbon in a treatment column provided with a perforated plate and to continuously let copper electrolyte pass through, for an application. Thus, a batch processing method has to be taken. This is not preferable as an application to a step for a continuous copper electrolytic plating.
DISCLOSURE OF THE INVENTION
The present invention is made under the above-noted circumstances as a background, and is to provide a filtration method of copper electrolyte that can remove minute electrolytic by-products and dirt and may also significantly improve filtration efficiency by improving a conventional filtration method, the so-called precoating method.
In order to solve the problems, in a filtration method of copper electrolyte to remove electrolytic by-products and dirt which affect copper electrolysis, by passing the copper electrolyte through a filter element precoated with a filtering aid, in the invention, a precoated layer of a filtering aid is formed on a filter element in advance. Activated carbon preliminary treatment solution containing powdery activated carbon is passed through the filter element formed with the precoated layer, and is also circulated until no powdery activated carbon leaks from an outlet of the filter element, thus forming a powdery activated carbon layer on the precoated layer. Subsequently, copper electrolyte is passed through for filtration.
According to the present invention, minute electrolytic by-products and dirt contained in copper electrolyte may be surely removed for filtration without mixing powdery activated carbon into copper electrolyte. Moreover, as powdery activated carbon is used, a contact surface area of the activated carbon sharply increases. A flow velocity may be reduced even at a large flow rate in volume. A long contact time may be ensured, and filtration efficiency may sharply improve.
A characteristic of the present invention is to form a powdery activated carbon layer further on a precoated layer by circulating the activated carbon preliminary treatment solution containing powdery activated carbon. The precoated layer of the filtering aid formed on the filter element has fine mesh, a so-called strainer, to let copper electrolyte pass through. However, in the present invention, powdery activated carbon is deposited on the strainer formed of the filtering aid, and the powdery activated carbon layer is formed on the precoated layer finally. When powdery activated carbon is passed through the precoated layer, a phenomenon is initially seen in which most of the powdery activated carbon passes through the precoated layer and leaks out from an outlet of the filter element. However, as the circulation is being repeated, the powdery activated carbon gradually fills up the strainer of the precoated layer and finally stops leaking therefrom. As the circulation is further repeated, a powdery activated carbon layer through which only solution can pass is formed on the precoated layer.
The filtering aid relating to the present invention may be a commonly known filtering aid. For instance, diatomaceous earth, pearlite, cellulose, and so forth may be used. Moreover, a filter element relating to the present invention may be filter cloth and a metallic screen, or other porous elements as long as a filtering aid may be precoated thereto and solution can pass through it by adding pressure to the solution. Additionally, the activated carbon preliminary treatment solution relating to the present invention is not particularly limited in its composition. For instance, copper electrolyte as a filtering object may be directly used, and the copper electrolyte may be diluted for use. In short, in case of filtering by passing copper electrolyte after a powdery activated carbon layer is formed, any treatment solution may be used as long as the activated carbon preliminary treatment solution provides no effects on a copper electrolytic platin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Filtration method of copper electrolyte does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Filtration method of copper electrolyte, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Filtration method of copper electrolyte will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3033546

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.