Filtration membrane module

Liquid purification or separation – Casing divided by membrane into sections having inlet – Each section having inlet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S321900, C210S433100

Reexamination Certificate

active

06203699

ABSTRACT:

The invention relates to a capillary filtration membrane module, comprising a filter housing provided with an inlet, an outlet and a membrane compartment accommodating a bundle of capillary filtration membranes, said filtration membranes being cased at both ends of the membrane module in membrane holders, and said membrane compartment being provided with discharge conduits coupled to the outlet for the conveyance of the permeate.
Such a filtration membrane module is disclosed in applicant's Dutch patent application NL-A-1,004,489. The discharge conduits in the form of discharge pipes described therein are a considerable improvement with respect to the conveyance of liquid that has passed through the membrane wall (the permeate), to the outlet of the membrane module. They largely, but not completely prevent extremely strong local flow currents that could damage or pinch the capillary membranes. In the crosswise direction of the module the discharge pipes take up much space at the expense of the number of capillary membranes that can be fitted into the membrane module. Fewer capillary membranes result in a reduced filtration capacity of the membrane module.
It is the object of the invention to eliminate the above-mentioned disadvantages. To this end the invention provides a filtration membrane module, characterized in that the discharge conduits comprise at least one discharge lamella provided in the membrane compartment and extending substantially in the longitudinal direction of the capillary filtration membrane.
The discharge lamellae can be made much thinner than the width of the known discharge pipes, at an equivalent discharge capacity, so that more capillary filtration membranes can be accommodated in the membrane module. The membrane module according to the invention has the further advantage that via the discharge lamellae the permeate flows even more evenly to the outlet than when using discharge pipes. In this way the forces exerted on the capillary filtration membranes will be distributed better. In addition, during periodic flushing to remove contamination from and/or off the membrane wall, which is performed by reversing the flow direction of the liquid, the capillary filtration membranes are flushed better and more evenly over their total length. This improves the cleaning of the membrane wall of the capillary filtration membrane, prolonging its service life and providing a better guarantee of maintaining the filtration capacity. Often chemicals are added to the flushing liquid to enhance the cleaning efficiency. The application of discharge lamellae results in a clearly improved discharge of said chemicals from the membrane module.
In order to attain a maximal discharge capacity, the length of the discharge lamellae is substantially equal to the length of the membrane compartment. This also promotes an even flow of permeate and flushing liquid in the membrane compartment.
In a preferred embodiment the discharge lamellae are corrugated, the corrugations extending substantially perpendicular to the longitudinal direction of the capillary filtration membranes. The corrugations may serve for the permeate's and the flushing liquid's discharge and supply respectively. The capillary filtration membranes will not fill the space within said corrugation, so that within the corrugation unhindered passage of permeate and flushing liquid to the outlet is provided.
The tops of the corrugations of the discharge lamellae directed toward the capillary filtration membrane are preferably substantially flat. In this way the capillary filtration membrane rest against the substantially flat portions of the discharge lamellae. Forces that the discharge lamellae exert during use on the capillary filtration membranes are in this manner distributed over a larger surface area, thereby reducing the chance of damaging or pinching the capillary filtration membranes.
In another possible embodiment, the discharge lamellae are double-walled, the walls being provided with at least one outlet opening to the membrane compartment. Permeate can now flow via the outlet openings into the space between the walls of the discharge lamellae, to be subsequently conveyed via said space toward the outlet. The walls will be substantially flat, so that forces exerted by the walls on the capillary filtration membranes are distributed over a large surface area and thus distributed better.


REFERENCES:
patent: 4749551 (1988-06-01), Borgione
patent: 492 045 (1992-07-01), None
patent: 1 004 489 (1998-05-01), None
patent: 96/08306 (1996-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Filtration membrane module does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Filtration membrane module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Filtration membrane module will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2459701

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.