Filters employing both acidic polymers and...

Gas separation: apparatus – Solid sorbent apparatus – Plural diverse separating means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C055S385100, C055S315000, C210S502100

Reexamination Certificate

active

06740147

ABSTRACT:

BACKGROUND OF THE INVENTION
In this age of increased air pollution, the removal of chemicals from the air we breathe is a concern of everyone. In addition, in the fabrication of electronic materials and of devices such as semiconductors, there is a requirement for uncontaminated air of high quality. To filter contaminants from the air, gas phase filtration is commonly employed, typically using activated carbon manufactured in various ways. One approach uses a carbon/adhesive slurry to glue the carbon to the substrate. The adhesive decreases carbon performance by forming a film on its surface. In another approach, an organic-based web is carbonized by heating, followed by carbon activation. Filters produced by such an approach is expensive and has relatively low adsorption capacity. In yet another approach, a slurry of carbon powders and fibers is formed into sheets by a process analogous to a wet papermaking process. This material has a medium-to-high cost, and has an undesirable high pressure drop. Moreover, chemically-impregnated carbon particles, used for the chemisorption of lower molecular weight materials, cannot be efficiently used in conjunction with an aqueous process, as the aqueous nature of the process either washes away the chemical used to impregnate the carbon, or reacts undesirably with the impregnating or active chemical groups thereby rendering it inoperative. In general, however, filter materials that do not incorporate chemically-active groups perform far less effectively for some key low-molecular-weight components, such as ammonia, in comparison to filter materials that include chemically-active groups.
SUMMARY OF THE INVENTION
Such filters have been accepted in the industry, and they are presumably considered to perform adequately for their intended purpose. However, they are not without their shortcomings. In particular, none of these aforementioned prior art approaches fully achieve the desired properties that provide a clean, cost effective, high efficiency, low pressure drop, adsorptive composite.
The present invention provides a filter which overcomes these shortcomings. In particular, in one aspect of the invention, a fluid-permeable filter includes a conduit through which fluid, particularly gas, can flow. Within the conduit is chemisorptive media that includes a copolymer having an acidic functional group for chemically adsorbing a base contaminant in a fluid passing through the conduit. Also within the conduit is physisorptive media for physically adsorbing a condensable contaminant from a fluid passing through the conduit. The chemisorptive media and physisorptive media are in separate filter elements in a preferred embodiment, though the two media types can alternatively be intermixed to form a single, undivided filter body.
Preferably, the filter is a clean, cost-effective, high-efficiency, low-pressure-drop, gas phase filter comprising a high-surface-area, highly-acidic, chemically-acidic adsorbent in combination with untreated, or virgin, activated carbon. One embodiment of the invention employs a non-woven composite material having acidic functional groups that bind to airborne bases. The untreated, activated carbon adsorbs organic and inorganic condensable contaminants, typically those having a boiling point greater than 150° C. The invention can be used in lithography systems that employ materials that are sensitive to impurities, such as molecular bases (e.g., ammonia and n-methyl pyrrolididnone), and organic and inorganic condensable contaminants (e.g., iodobenzenes and siloxanes), present in the air circulating through semiconductor wafer processing equipment. A large number of bases including ammonia, NMP, triethylamine pyridine, and others, can be maintained at concentrations below 2 ppb in a tool cluster filtered with the present invention. The acidic adsorbent can be formed, for example, by the dry application of an active, acidic adsorbent to a non-woven carrier material that is then heated and calendered with cover sheets.
The non-woven carrier materials can be polyester non-wovens, and the acidic adsorbent can include sulfonated divinyl benzene styrene copolymer. One embodiment employs carboxylic functional groups. The acidic groups have at least 1 milliequivalent/gram of copolymer acidity level or higher and preferably at least 4.0 milliequivalents/gram of copolymer or higher. The polymers used are porous, and can have a pore size in the range of 50-400 angstroms and a surface area of 20 m
2
/g or higher.
The dry processing of a non-woven polyester batting allows for even distribution of acidic, adsorbent particles throughout the depth of the polyester batting. This provides an increased bed depth at a very low pressure drop, which is highly desirable since a twofold increase in bed depth can increase the filter's breakthrough time (time to failure) fourfold when using these thin fabric-based sulfonic beds.
Activated carbon is discussed in greater detail in U.S. Pat. No. 5,582,865, titled, “Non-Woven Filter Composite.” The entire contents of this patent are incorporated herein by reference. The filter can have two (or more) layers, one of activated carbon and one of sulfonated divinyl benzene styrene copolymer beads. Additionally, two or more materials can be mixed to provide a composite filter.
Thus, provided herein is a clean, cost-effective, high-efficiency, low-pressure-drop, adsorptive composite filter, and a method for forming said composite filter. The composite filter is particularly useful for the removal of base and organic and inorganic condensable contaminants (typically those with a boiling point greater than 150 degrees C.) in an air stream. Particulates will also be removed if greater than the pore size of the filter. The filter can have a service life of several months with a pressure drop to reduce power consumption and minimize impact on the systems operation. For example, a high-pressure-drop filter can require a longer time for a lithography system to equilibrate the temperature and humidity after filter replacement. In comparison to chemically-treated, activated-carbon filters, the combination filters of this invention offer much higher adsorption performance due to the superior adsorption properties of untreated, activated carbon over chemically-treated, activated carbon. The use of untreated, activated carbon in accordance with methods described herein can provide superior breakthrough capacity for organic and inorganic condensable contaminants because the chemical treatment performed on the activated carbon to render it suitable for capturing molecular bases compromises its capacity for adsorbing organic and inorganic condensable contaminants, typically those with a boiling point greater than 150 degrees C.
In another embodiment, a synthetic carbon material, such as that described in U.S. Pat. No. 5,834,114, the contents of which are incorporated herein by reference in their entirety, can be coated with the acidic materials of the present invention to provide a porous acidic filter element in accordance with the invention. In yet another embodiment, the activated nutshell carbon media described in U.S. Pat. No. 6,033,573, the contents of which are incorporated by reference in their entirety, can be used alone or in combination with any of the other chemisorptive or physisorptive media described herein to remove contaminants from the air flowing through the conduit in the same manner as is taught in this specification.
A detection system and method of use for determining when the filter needs to be replaced by detecting base contaminants in air is described in U.S. patent application Ser. No. 09/232,199, entitled, “Detection of Base Contaminants in Gas Samples,” filed on Jan. 14, 1999, now U.S. Patent No. 6,207,460, with Oleg Kishkovich, et al. as inventors. Also, U.S. patent application Ser. No. 08/795,949, entitled, “Detecting of Base Contaminants,” filed Feb. 28, 1997, now U.S. Patent No. 6,096,267, with Oleg Kishkovich, et al. as inventors, and U.S. patent application Ser. No. 08/996,790, entit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Filters employing both acidic polymers and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Filters employing both acidic polymers and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Filters employing both acidic polymers and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3226965

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.