Filter for perfusion cultures of animal cells and the like

Chemistry: electrical and wave energy – Processes and products – Electrophoresis or electro-osmosis processes and electrolyte...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

204565, 204643, C25B 100, C25B 700, G01N 2726

Patent

active

056267347

ABSTRACT:
A filter has a conduit having an opening for flow of fluid into the conduit, a pump for pumping fluid into the conduit through the opening, electrodes spaced apart from each other across the opening such that fluid flowing through the opening passes between the electrodes; and an AC electrical source for the electrodes, the source of AC electrical energy having a frequency and voltage such that an electric field created by the AC electrical energy in the area around the electrodes imposes a negative dielectrophoretic force on target particles carried by the fluid, the negative dielectrophoretic force being opposed to the direction of fluid flow through the opening and having sufficient strength to prevent the target particles from passing between the electrodes into the conduit. The filter is mounted in a bioreactor for filtering viable cells and retaining them in culture medium.

REFERENCES:
patent: 4326934 (1982-04-01), Pohl
patent: 4441972 (1984-04-01), Pohl
patent: 4956065 (1990-09-01), Kaler et al.
patent: 5133844 (1992-07-01), Stevens
patent: 5344535 (1994-09-01), Betts et al.
patent: 5454472 (1995-10-01), Benecke et al.
patent: 5489506 (1996-02-01), Crane
Fuhr et al. (Cell Manipulation and Cultivation under A.C. Electric Field Influence in Highly Conductive Culture Media, Biochimica et Biophysica Acta, 1201, 353-360) Dec. 15, 1994.
Markx et al. (Dielectrophoretic Separation of Cells: Continuous Separation, Biotechnology and Bioengineering, 45, 337-347) Feb. 20, 1995.
Spin Filter Perfusion System for High Density Cell Culture: Production of Recombinant Urinary Type Plasminogen Activator in CHO Cells, George C. Avgerinos, Denis Drapeau, Jeff S. Socolow, Jen-i Mao, Kathy Hsiao, and Robert J. Broeze, Bio/Technology, vol. 8, Jan., 1990, pp. 54-58.
Baculovirus Expression System Scalleup by Perfusion of High-Density Sf-9 Cell Cultures, Antoine W. Caron, Rosanne L. Tom, Amine A. Kamen, and Bernard Massie, Biotechnology and Bioengineering, vol. 43, pp. 881-891 (1994). No month available.
Vortex flow filtration of mammalian and insect cells, Steven J. Hawrylik, David J. Wasilko, Joann S. Pillar, John B. Cheng and S. Edward Lee, Cytotechnology 15: 253-258, 1994. No month available.
High-Density Continuous Cultures of Hybridoma Cells in a Depth Filter Perfusion System, Duk Jae Oh, Sang Kyo Choi, and Ho Nam Chang, Biotechnology and Bioengineering, vol. 44, pp. 895-901 (1994) No month available.
Influence of the Screen Material on the Fouling of Spin Filters, Laurent R.J. Esclade, Stephane Carrel, and Paul Peringer, Biotechnology and Bioengineering, vol. 38, pp. 159-168 (1991). No month available.
Viable Cell Recycle with an Inclined Settler in the Perfusion Culture of Suspended Recombinant Chinese Hamster Ovary Cells, James A. Searles, Paul Todd, and Dhinakar S. Kompala, Biotechnol. Prog. 1994, 10, 198-206. No month available.
Enhanced antibody production associated with altered amino acid metabolism in a hybridoma high-density perfusion culture established by gravity separation, Henrik Albahn Hansen, Bo Damgaard and Claus Emborg, Cytotechnology II: 155-166, 1993. No month available.
Selective Recycle of Viable Animal Cells by Coupling of Airlift Reactor and Cell Settler, Manfred Hulscher, Uwe Scheibler, and Ulfert Onken, Biotechnology and Bioengineering, vol. 39, pp. 442-446 (1992) No month available.
Interaction of cell culture with downstream purification: a case study, Wolf Berthold and Ralph Kempken, Cytotechnology 15: 229-242, 1994. No month available.
Acoustic Cell Filter for High Density Perfusion Culture of Hybridoma Cells, Felix Trampler, Stefan A. Sonderhoff, Phylis W.S. Pui, Douglas G. Kilburn and James M. Piret, Bio/Technology vol. 12, Mar., 1994, pp. 281-284.
A Novel Ultrasonic Resonance Field Device for the Retention of Animal Cells, O. Doblhoff-Dier, Th. Gaida, and H. Katinger, Biotechnol. Prog., 1994, col. 10, No . 4, pp. 428-432. No month available.
Dielectrophoretic concentration of micro-organisms using grid electrodes, G.P. Archer, J.C. Render, W.B. Betts, and M. Sancho, Microbios 76: 237-244, 1993. No month available.
Electrode design for negative dielectrophoresis, Y. Huang and R. Pethig, Meas. Sci. Technol. 2 (1991), 1142-1146. No month available.
Electrokinetic behaviour of colloidal particles in travelling electric fields: studies using yeast cells, Y. Huang, X-B Wang, JA Tame and R. Pethig, J. Phys. D: Appl. Phys. 26: 1528-1535. No date available.
Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes, Ronald Pethig, Ying Huang, Xiao-Bo Wang and Julian P.H. Burt, J. Phys. D. Appl. Phys. 24 (1992) 881-888. No month available.
Dielectrophoretic Separation of Cells: Continuous Separation, Gerard H. Markx and Ronald Pethig, Biotechnology and Bioengineering, vol. 45, pp. 337-343 (1995). No month available.
Dual-frequency dielectrophoretic levitation of Canola protoplasts, Karan V.I.S. Kaler, Jing-Ping Xie, Thomas B. Jones, and Reginald Paul, Biophysical Journal, vol. 63, Jul., 1992, pp. 58-69.
The primary stages of protein recovery, Shwu-Maan Lee, Journal of Biotechnology, II(1989) pp. 103-118. No month available.
Scale-Up and Validation of Sedimentation Centrifuges, Part I: Scale-up, J.T. Mahar, BioPharm, Sep. 1993, pp. 42-51.
Dielectrophoresis, The behaviour of neutral matter in nonuniform electric fields, Herbert A. Pohl, Cambridge University Press 1978, pp. 350-539. No month available.
Cell manipulation and cultivation under a.c. electric field influence in highly conductive culture media, Gunter Fuhr, Henning Glasser, Torsten Muller, Thomas Schnelle, Biochimica et Biophysica Acta 1201 (1994) 353-360, Mar. 21, 1994.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Filter for perfusion cultures of animal cells and the like does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Filter for perfusion cultures of animal cells and the like, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Filter for perfusion cultures of animal cells and the like will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2129745

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.