Radiation imagery chemistry: process – composition – or product th – Radiation sensitive product – Identified backing or protective layer containing
Reexamination Certificate
2001-05-14
2002-07-23
Schilling, Richard L. (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Radiation sensitive product
Identified backing or protective layer containing
C430S349000, C430S531000, C430S533000
Reexamination Certificate
active
06423483
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to light sensitive imaging elements in general and in particular to film supports whose ability to adhere to other layers is improved upon annealing.
BACKGROUND OF THE INVENTION
Because of curl and core-set specifications, an advanced photo system (APS) film uses a polyethylene naphthalate based support that must be annealed before applying the emulsion layers. The film support can be prepared by purchasing oriented PEN base, annealing the base, and then applying the adhesive (subbing) and backing layers forming the following structure:
Gel based sub
adhesion layer
PEN support
adhesive layer
antistat/binder
magnetics layer
lubricant
To reduce manufacturing costs it would be desirable to manufacture the PEN support and apply as many of the support coatings in-line with the base manufacturing before annealing in a wound roll format. The current magnetics coated support undergoes degradation with annealing resulting in poor magnetics layer adhesion. One method of improving adhesion is the addition of crosslinking agents to the magnetics layer, such as isocyanates, a known skin and respiratory sensitizer. Because of health and safety concerns with handling isocyanates it is desirable to use an alternative crosslinking agent. We have found that good adhesion can be achieved by the use of heat activated blocked isocyanates in the magnetics layer. These materials will crosslink the coating during the annealing stage of manufacturing (application of heat over a long period of time). The added advantage of these materials is that they do not react at room temperature and thereby extend the life of a coating solution and provide easy clean-up.
U.S. Pat. No. 4,225,665 describes an antistat layer that contains a carboxylic acid functionalized polymer which is crosslinked with aziridine.
U.S. Pat. No. 5,198,499 describes an antistat layer that is crosslinked with a melamine which provides good abrasion resistance, adhesion and antistatic properties.
U.S. Pat. No. 5,427,900 describes a photographic film with a magnetics layer on the backside. The preferred binder for the magnetics layer is cellulose diacetate which may be crosslinked with isocyanates, aziridines or melamines.
U.S. Pat. No. 5,432,050 describes a magnetics layer with filler particles which may be crosslinked with isocyanates, aziridines or melamines.
If the magnetics package is applied before the annealing process, the adhesion of the backings is degraded because of the annealing process. It would be advantageous to coat as many backside layers as possible in-line before annealing.
SUMMARY OF THE INVENTION
The present invention discloses that by adding blocked isocyanates to the magnetics layer and then annealing the package results in good adhesion. This allows the manufacture of a polyester support to be coated in-line with several backing layers. Hence, the present invention describes:
A photographic element comprising:
a polyester support;
an antistatic layer; and
a transparent magnetic layer comprising a cellulose binder, ferromagnetic particles and a blocked isocyanate.
The advantages of the invention are many. The use of blocked isocyanate for an annealable backing package gives good adhesion to preferred antistatic layer or non-blocking protective layers. Significant manufacturing and environmental advantages are offered compared with conventional isocyanate cross-linkers since the blocked isocyanates do not react at room temperature. In particular, blocked isocyanates can extend coating solution life, provide easy clean-up and reduce operator exposure to reactive chemistries. To date, cross-linking the magnetic layer has been the only method found to provide an annealable magnetic backing having a cellulose diacetate magnetic layer and a vanadium oxide antistatic layer.
DETAILED DESCRIPTION OF THE INVENTION
The imaging support of this invention is suitable for use in various imaging elements including, for example, photographic, electrostatographic, photothermographic, migration, electrothermographic, dielectric recording, and thermal dye transfer imaging elements. Details with respect to the composition and function of this wide variety of imaging elements are provided in U.S. Pat. No. 5,719,016. Imaging elements that can be provided with a support in accordance with this invention can differ widely in structure and composition. For example, they can vary in regard to the type of support, the number and composition of the image forming layers, and the number and kinds of auxiliary layers included in the elements. The image forming layer(s) of a typical photographic imaging element includes a radiation sensitive agent (e.g., silver halide) dispersed in a hydrophilic water-permeable colloid. Suitable hydrophilic colloids include both naturally-occurring substances such as proteins, for example, gelatin, gelatin derivatives, cellulose derivatives, polysaccharides such as dextran, gum arabic, and the like; as well as synthetic polymers, for example, water-soluble polyvinyl compounds such as poly(vinylpyrrolidone), acrylamide polymers, and the like. A common example of an image-forming photographic layer is a gelatin-silver halide emulsion layer. In particular, the photographic elements can be still films, motion picture films, x-ray films, graphic arts films or microfiche. They can be black-and-white elements, color elements adapted for use in negative-positive process or color elements adapted for use in a reversal process.
Polymer film supports which are useful for the present invention include polyester supports such as —1,4-cyclohexanedimethylene terephthalate, polyethylene 1,2-diphenoxyethane-4,4′-dicarboxylate, polybutylene terephthalate, and polyethylene naphthalate and the like; and blends or laminates thereof. Particularly preferred are polyethylene naphthalate and blends of polyethylene naphthalate with polyethylene terephthalate. Additional suitable polyester supports, polyester copolymers and polyester blends are disclosed in detail in U.S. Pat. No. 5,580,707.
Film supports can be surface-treated on either or both sides prior to application of the gelatin subbing layer by various processes including corona discharge, glow discharge, LTV exposure, flame treatment, electron-beam treatment or treatment with adhesion-promoting agents including dichloroacetic acid and trichloroacetic acid, phenol derivatives such as resorcinol and p-chloro-m-cresol, solvent washing prior to overcoating with a subbing layer of the present invention. In addition to surface treatment or treatment with adhesion promoting agents, additional adhesion promoting primer or tie layers containing polymers such as vinylidene chloride-containing copolymers, butadiene-based copolymers, glycidyl acrylate or methacrylate-containing copolymers, maleic anhydride-containing copolymers, condensation polymers such as polyesters, polyamides, polyurethanes, polycarbonates, mixtures and blends thereof, and the like may be applied to the polyester support. Particularly preferred primer or tie layers comprise a chlorine containing latex or solvent coatable chlorine containing polymeric layer. Vinyl chloride and vinylidene chloride containing polymers are preferred as primer or subbing layers of the present invention.
The subbing or primer composition may be applied to the polyester base using an in-line process during the base manufacture or by an off-line process. When applied in an in-line process, the layer may be coated on the polyester base prior to orientation, after orientation, or after uniaxial orientation but before biaxial orientation. The primer composition described is typically applied in accordance with U.S. Pat. Nos. 2,627,088 and 3,143,421. The coating formulation is coated onto the amorphous support material, dried, and then the resulting film is oriented by stretching and other steps applied to the film such as heat setting, as described in detail in U.S. Pat. No. 2,779,684. Accordingly, the particular support film used, the procedure and apparatus for the coating thereof and t
Bauer Charles L.
Brady Brian K.
Eichorst Dennis J.
Schilling Richard L.
Wells Doreen M.
LandOfFree
Film support with improved adhesion upon annealing does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Film support with improved adhesion upon annealing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Film support with improved adhesion upon annealing will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2847688