Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
2000-04-10
2001-04-24
Cain, Edward J. (Department: 1714)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
active
06221945
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a film for cutting off the passage of heat rays through a transparent or semi-transparent material, such as glass or plastics, for e.g. the windows of vehicles, buildings, offices or houses, telephone booths, show windows, or lamps, and a coating liquid used for forming the same.
2. Description of the Prior Art
A sheet of glass having a film formed on its surface from a material reflecting visible and infrared wavelengths has been used as heat-ray reflecting glass for removing or reducing heat emitted by the sun, or an electric bulb, or any other source of light. The film has been formed from a material selected from among metal oxides such as FeOx, CoOx, CrOx and TiOx, and metals such as Ag, Au, Cu, Ni and Al.
These materials, however, not only reflect or absorb near-infrared radiation known as a source of heat, but also have a low transmittance of visible light. A transparent material used for buildings, vehicles, telephone booths, etc., are required to have a high transmittance of visible light. If any of the known materials as mentioned above is used for any such purpose, it has been necessary to form a very thin film, and it has been usual practice to employ a process, such as spraying and baking, CVD, sputtering or vacuum vapor deposition, to form a film having a very small thickness in the order of 10 nm.
These processes have, however, been unsatisfactory for a number of reasons including the necessity for a large apparatus, or vacuum equipment, low productivity, difficulty in forming a film covering a large area, and the expenditure of a large amount of cost.
Referring to the drawbacks of the films formed from the known materials, a film having a small thickness and thereby a high transmittance of light has a low property of cutting off heat rays, while a film is darkened if its thickness is sufficiently large to give it a high property of cutting off heat rays. A film having a high property of cutting off heat rays is also likely to have a high reflectivity of visible light and present a surface shining like a mirror and spoiled in appearance. Moreover, many of these materials give a film having a high electric conductivity which reflects radio waves and makes them unreceivable by a radio or television receiver, or a portable telephone, or causes the disturbance of waves in or around the structure in which the film is used.
These drawbacks can be overcome by a film having a low reflectivity of visible light and a high absorption or reflectivity of near infrared radiation, as well as a surface resistivity of or above about 10
6
&OHgr;/□. There has, however, not been known any such film, or any material suitable therefor.
Antimony tin oxide (ATO) and indium tin oxide (ITO) are known as materials having a high transmittance of visible light and a power of cutting off heat rays. These materials have a relatively low reflectivity of visible light and does not give a shining surface to a film, but as their plasma wavelengths fall in relatively long wavelengths in the near infrared region, a film formed from either material has been unsatisfactory in its property of reflecting or absorbing near infrared radiation close to visible light. Moreover, the film has been so high in electric conductivity as to reflect radio waves.
SUMMARY OF THE INVENTION
It is, therefore, an object of this invention to provide a film for cutting off heat rays which has a high transmittance and a low reflectivity of visible light, a low transmittance of near infrared radiation and a surface resistivity of or above about 10
6
&OHgr;/□. It is another object of this invention to provide a coating liquid which makes it possible to form any such film easily at a low cost even on a large surface.
We, the inventors considered that it would be effective to use borides having a large quantity of free electrons, and as a result of our extensive research work, We have found as a basis for our invention that a film of high density formed from a dispersion of ultrafine particles of any such material has a maximum transmittance of light in the visible region, and a minimum transmittance in the near infrared region close to visible light.
According to this invention, there is provided a coating liquid which includes a dispersion of fine particles of a boride of one or more metals selected from the group of La, Pr, Nd, Ce, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, Ca, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, the particles having an average diameter not exceeding 100 nm.
The dispersion may also contain one or both of fine particles of ruthenium oxide and fine particles of iridium oxide, both having an average diameter not exceeding 100 nm.
In either event, the dispersion may also contain one or more of alkoxides of silicon, zirconium, titanium and aluminum, and partially polymerized products of those alkoxides.
The dispersion may further contain a resinous binder.
According to this invention, there is also provided a film formed on a base for cutting off heat rays by coating it with a coating liquid and heating it, the coating liquid including a dispersion prepared by dispersing fine particles of a boride of one or more metals selected from among La, Pr, Nd, Ce, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, Ca, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and Win a resinous binder, or a binder containing one or more metal oxides selected from among silicon, zirconium, titanium and aluminum oxides.
The film may be covered with an oxide film containing one or more metal oxides selected from among silicon, zirconium, titanium and aluminum oxides, or a resin film to form a multilayer film for cutting off heat rays.
In either event, the film has a maximum transmittance of light at a wavelength of 400 to 700 nm and a minimum transmittance at a wavelength of 700 to 1800 nm, and its maximum and minimum transmittances have a difference of 15 points or more in percentage. It also has a surface resistivity of 10
6
&OHgr;/□ or above. Therefore, the film of this invention does not have a shining surface, and has a high property of transmitting radio waves.
REFERENCES:
patent: 4929507 (1990-05-01), Nishihara et al.
patent: 5401793 (1995-03-01), Kobayashi et al.
Adachi Kenji
Kuno Hiroko
Takeda Hiromitsu
Cain Edward J.
Dykema Gossett PLLC
Sumitomo Metal & Mining Co., Ltd.
LandOfFree
Film for cutting off heat rays and a coating liquid for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Film for cutting off heat rays and a coating liquid for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Film for cutting off heat rays and a coating liquid for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2451467