Filling system and filling element

Fluent material handling – with receiver or receiver coacting mea – Processes – Gas or variation of gaseous condition in receiver

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S004000, C141S005000, C141S006000, C141S040000, C141S044000, C141S045000, C141S046000, C141S048000, C141S049000, C141S050000, C141S057000, C141S059000, C141S293000, C141S302000, C141S305000

Reexamination Certificate

active

06189578

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a filling system to fill bottles or similar containers with a liquid product under counter pressure, and to a filling element.
OBJECT OF THE INVENTION
Filling systems or bottling machines and the filling elements used in such systems or machines are known in a wide variety of realizations. The object of the invention is to create a filling system and a filling element suitable for such a system that has a simplified construction and can be used very universally.
SUMMARY OF THE INVENTION
The present invention discloses a filling system and a filling element. The filling system being to fill bottles or similar containers with a liquid product under counter pressure, whereby, in at least one embodiment, chronologically prior to the actual filling phase, the interior of the container can be pre-pressurized with an inert gas under pressure, for example CO
2
gas, and during the filling phase, the gas displaced from the container by the incoming product can be contained under pressure by a return gas collecting space. Chronologically subsequent to the filling phase, the container can be depressurized to atmospheric pressure by means of a depressurization duct. The filling system having at least one filling element, with a liquid duct that is realized in a housing of the filling element. This liquid duct can form a dispensing opening for the product and emerge above a filling tube that projects beyond an underside of the filling element. A fluid valve, in the liquid duct, can open during the filling phase to fill the respective container fastened with its container mouth to the filling element and close again at the end of the filling phase. A gas duct, when the container is fastened to the filling element, can be in communication with the interior of the container by means of at least one gas duct opening that can be offset with respect to the filling tube. Also, there can be first, second and third individually controllable control valves to control gas pathways that are realized in the housing, wherein, a first control valve can be in communication on the input side by means of a first gas pathway with an area of the liquid duct downstream of the liquid valve in the direction of flow of the product, and on the output side with a second gas pathway. A second control valve can be in communication on the input side by means of a third gas pathway with a source for the inert gas under pressure. A third control valve can be in communication on the input side by means of a third gas pathway with the gas duct, and with a fourth gas pathway that has at least a first throttle for the depressurization, and can be in communication on the output side by means of a fifth gas pathway that has at least one second throttle with the return gas collecting space. Further, in a sixth gas pathway that connects the first control valve on the output side with the third control valve on the input side, there can be a first check valve that opens in one direction of flow from the third control valve to the first control valve, and closes for a flow in the opposite direction. Further, in a gas pathway or bypass parallel to the at least one second throttle or nozzle there can be a second check valve that opens in one direction of flow from the return gas collecting space to the third control valve and closes for a flow in the opposite direction.
The filling element of the present invention, being to fill bottles or similar containers with a liquid product under counter pressure, whereby, in at least one embodiment, chronologically prior to the actual filling phase, the interior of the container can be pre-pressurized with an inert gas under pressure, for example CO
2
gas, and during the filling phase, the gas displaced from the container by the incoming product can be contained under pressure by a return gas collecting space. Chronologically subsequent to the filling phase, the container can be depressurized to atmospheric pressure by means of a depressurization duct. The filling element being at least one filling element. A liquid duct is realized in a housing of each filling element. This liquid duct can form a dispensing opening for the product and emerge above a filling tube that projects beyond an underside of the filling element. A liquid valve in the liquid duct can open in the filling phase to fill the respective container placed with a container mouth on the filling element and close again at the end of the filling phase. A gas duct, when the container is fastened to the filling element, can be in communication with the interior of the container by means of at least one gas duct opening that is offset with respect to the filling tube. There can be first, second and third individually controllable control valves to control gas pathways that are realized in the housing, whereby a first control valve can be in communication on the input side by means of a first gas pathway with an area of the liquid duct downstream of the liquid valve in the direction of flow of the product, and on the output side with a second gas pathway. A second control valve can be in communication on the input side by means of a third gas pathway with a source for the inert gas under pressure. A third control valve can be in communication on the input side by means of a third gas pathway with the gas duct and with a fourth gas pathway that has at least a first throttle for the depressurization, and is in communication on the output side by means of a fifth gas pathway that has at least one second throttle with the return gas collecting space, whereby in a sixth gas pathway which can connect the first control valve on the output side with the third control valve there can be a first check valve which opens in a direction of flow from the third control valve to the first control valve, and closes for a flow in the opposite direction. Further, in a gas pathway or bypass parallel to the at least one second throttle or nozzle there can be a second check valve, which opens in a direction of flow from the return gas collecting chamber to the third control valve, and closes for a flow in the opposite direction.
The present invention makes it possible, merely by modifying the actuation of the individual control valves that are provided separately for each filling element and can be actuated individually, i.e. merely by modifying a program of an associated electrical control device, to perform a wide variety of filling processes that are optimally suited to the respective products being bottled. The advantageous refinements of the present invention are set out in the features and claims included hereinbelow.
In other words, in at least one embodiment of the present invention, by modify the actuation of the individual valves at one or more filling element, a wide variety of filling products and/or bottle types can be filled. For example, this can be accomplished by modifying or choosing one or more programs in a computer-assisted control device, for example, programs stored or entered into a computer. It can be possible to modify the actuating and control of different valves located at the filling elements of the bottling machine, in accordance with the filling product and/or bottle type being used. For example, in at least one embodiment, the timing, order and/or length of actuation or deactuation of the liquid valve, the control valves and/or check valves, can be individually controlled to make it possible to perform a wide variety of different filling processes, and to accommodate thereby for a variety of different filling products and corresponding bottle types and sizes. The individual control of some or all of the valves allows the inventive filling system, and each filling element, to be used for a variety of different filling products, requiring different filling processes. By way of example, in at least one embodiment of the invention, different filling elements on the same bottling machine could possibly be controlled by the control device to pe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Filling system and filling element does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Filling system and filling element, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Filling system and filling element will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2615104

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.