Filling level measuring device and method for the...

Fluent material handling – with receiver or receiver coacting mea – With signal – indicator – recorder – inspection means or exhibitor – Level or pressure in receiver

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S198000, C073S29000R, C073S29000R

Reexamination Certificate

active

06684919

ABSTRACT:

TECHNICAL FIELD
The present invention relates in general to a method for the non-contact determination of an overfilling of a receptacle filled with a filling product, wherein an envelope curve is generated from echo signals reflected on a filling product surface. Moreover, the present invention relates to an evaluation arrangement for realizing a method of this kind, and a filling level measuring device equipped with an evaluation arrangement of this kind.
Filling level measuring devices of the kind of interest here, work in particular according to the so-called pulse echo principle and scan a reflected echo signal.
Filling level measuring devices working on the pulse echo principle and scanning a reflected echo signal, generate from the scanned echo signal a series of data as to each echo in the echo image or the so-called envelope curve. Generating an envelope curve from echo signals is sufficiently known and, accordingly, further explanations as to this technology are not required here (cf., for example, German Patent DE 44 07 369 C2; M. Scholnik “Introduction to Radar Systems”, 2
nd
edition, 1980, McGraw-Hill; Peter Devine “Radar level measurement—the user's guide”, VEGA Controls Ltd., 2000, ISBN 0-9538920-0-X).
BACKGROUND INFORMATION
Conventional filling level measuring devices are capable of detecting the filling level by measuring individual echoes in the envelope curve. Thus, the envelope curve is, for example, examined with low-pass filters, in particular a pull-down low-pass filter. In this way, the echoes are searched in ranges, which have been previously fixed by the intersection point of a detection threshold and the echo signal. Thus, an echo in the envelope curve is characterized by various features, such as, for example, amplitude, echo width at a certain amplitude below the peak, and the ascending gradient of the scanned echo signal before the peak. In this manner, the actual useful echo is ascertained, i.e. the echo, which has been reflected by the actual filling product surface, in particular separate from the other echoes and the dying-out transmission signal.
With this kind of signal processing, the problem arises in the short range of the sensor, that echoes interfere with the transmission signal which has not yet died out. With filling level sensors according to prior art accordingly, there can no longer be ascertained an unequivocal statement as to the filling level with an overfilling of a receptacle to be monitored. This can even lead to false measurements under certain circumstances. As soon as this condition arises, it can be recognized as an overfilling, what hitherto caused problems.
European Patent Application EP 0 871 019 A1 describes a method for the determination of an overfilling during the measurement of a filling level by means of an ultrasonic transducer. In this method, an overfilling is ascertained when the ultrasonic transducer is immersed in the filling product, here a liquid, or is covered by it. For determining the overfilling, the dying-out output signal of the ultrasonic transducer generated by the post-pulse oscillation of the ultrasonic transducer at the end of each ultrasonic transmission pulse, is evaluated. Thereby, it is taken advantage of the fact that the duration of the post-pulse oscillation is shorter due to the better coupling of the ultrasonic transducer to the liquid than to air, when the ultrasonic transducer is covered by the liquid. This method is technically realized in that the duration of the post-pulse oscillation of the ultrasonic transducer, until the drop to a predetermined amplitude value, is compared to a predefined time limit value. As an alternative, the amplitude of the post-pulse oscillation of the output signal of the ultrasonic transducer is compared in a predetermined moment after the end of the alternating voltage pulse, to a predefined threshold value, which is rated so that it is fallen below when the ultrasonic transducer is covered by the liquid. A further alternative consists in that the amplitude of the post-pulse oscillation of the output signal of the ultrasonic transducer is integrated in a determined time window after the end of the alternating voltage pulse, and the integration value is compared to a predefined threshold value, which is rated so that it is fallen below, when the ultrasonic transducer is covered by liquid.
In summary, it has to be stated that all of the methods disclosed in this publication have in common that a determined threshold value or time limit value has to be fallen below so as to identify an overfilling. All methods are in particular based on the technical effect that, when it is immersed in a liquid, an ultrasonic transducer dies out in a considerably faster manner than when it oscillates in air. Exactly this effect is now referred to for determining an overfilling. What happens to the emitted echoes, remains unobserved. Therewith, this kind of determining an overfilling can only be applied with ultrasonic transducers, and it is, moreover, only reliable, when an overfilling may be equaled to an coverage by or immersion in a liquid. Correspondingly, this kind of determining an overfilling, however, is not applicable to various filling level measuring devices, such as, for example, radar sensors, since filling product covering the radar antenna leads to a strong reflection of the signal, and therewith to an increase of the amplitude.
A similar arrangement may be seen from German Patent Application DE 195 38 678 A1. Finally, general reference is made to German Patent Application DE 198 17 378 A1 disclosing in general a filling level measuring device, which is less sensitive and easier to service as compared to known float-type switches, for which purpose the level of a material is detected via reflection signals of an electromagnetic radiation, and constitutes here in particular a so-called TDR filling level measuring device.
SUMMARY OF THE INVENTION
The present invention relates to a method for detecting an overfilling of a receptacle filled with a filling product. It is in particular supposed to create a possibility that a filling level measuring device working in particular on the pulse echo principle and scanning a reflected echo signal, is allowed to automatically detect an overfilling of a receptacle.
According to a first exemplary embodiment of the present invention, a method for the non-contact determination of an overfilling of a receptacle filled with a filling product is described where an envelope curve is generated from echo signals reflected on a filling product surface, the echo signal amplitude in a predetermined short range of the envelope curve is mathematically processed and compared to a predetermined reference value, and upon overstepping the predetermined reference value, a signal representative of the overfilling of the receptacle is outputted.
According to a further exemplary embodiment of the present invention, an evaluation arrangement is proposed for the non-contact determination of an overfilling of a receptacle filled with a filling product, by evaluation of echo signals of a filling level measuring device, which echoes are reflected on a filling product surface, which filling level measuring device includes a processing arrangement, which mathematically processes the echo signal amplitude in a predetermined short range of an envelope curve generated from echo signals reflected on a filling product surface, and compares same to a predetermined reference value, and outputs a signal representative of the overfilling of the receptacle upon overstepping the predetermined reference value.
According to yet another exemplary embodiment of the present invention, a filling level measuring device is proposed for the non-contact determination of the filling level of a filling product in a receptacle, comprising a transmitting and receiving arrangement for transmitting signals and for receiving echo signals reflected on a filling product surface, and an evaluation arrangement for the non-contact determination of an overfilling of a recepta

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Filling level measuring device and method for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Filling level measuring device and method for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Filling level measuring device and method for the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3316284

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.