File folder

Books – strips – and leaves – Book – element thereof – or accessory therefor – Covers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C402S079000

Reexamination Certificate

active

06241286

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a file folder which can holds various kinds of documents.
2. Description of the Related Art
Nowadays a simple file folder which can hold documents is widely used for various kinds of desk work and so on. This file folder has a pair of rectangular sheet materials, which are connected via a folding line at a longer side, and a pair of shorter sides which adjoin said longer side are welded to each other. Therefore, documents can be inserted through the other (open) longer and shorter sides into a gap between both sheet materials to be held.
Conventional file folders are made of synthetic resins to observe documents which are held, and to keep durability, so that users can not draw their favorite designs or write texts concerning the documents on their surfaces to arbitrarily and visually record the content of the documents.
SUMMARY OF THE INVENTION
The present invention was conceived in order to solve the conventional problems, and the purpose is to provide a file folder which is made of a synthetic resin, and which allows arbitrary and visual recording on its surface.
To solve the above-mentioned problem, the present invention provides a file folder which is made of a synthetic resin, and has a pair of sheet materials which are connected each other, and are opposed to each other, which documents are held between the inner surfaces of said sheet materials, wherein a receiving layer which can receive substances which are displaying media such as inks is formed on at least one of the outer surfaces of said pair of sheet materials.
The above-mentioned sheet materials can be made of a synthetic resin such as polyethylene, polypropylene, a polyester, a polycarbonate, and polymethacrylate. The displaying media include various printing inks such as UV inks for printing, heat transcription inks and ink-jet inks for printers, toners for copying machines, oily inks for oil pens, water-color inks for water-color pens, core materials for pencils, stamp inks for stamps, and cinnabar seal inks.
A receiving layer which can receive materials for these displaying media is formed, for example, with a resin layer which contains both large particle size sponge silica having a particle size of 8-18 &mgr;m and small particle size sponge silica having a particle size of 1-7 &mgr;m. The term “sponge silica” in the present invention means the silica which has pores in a silica particle, i.e., “sponge structure”.
The pore volume of the sponge silica is preferably 0.7-7 ml/g, more preferably 0.8-4 ml/g. If the pore volume of the sponge silica is too small, the record-receiving property of the receiving layer tends to become low. If the pore volume of the sponge silica is too large, the viscosity of the resin liquid which consists of the receiving layer tends to become too high to coat for forming the receiving layer.
The resin liquid includes resin solutions, resin emulsions, molten hot-melt resins, two-liquid curing type unreacted resin liquids, UV-light-curing type unreacted resin liquids, and so on. The procedures to cure the resin liquid after coating or printing on a sheet material include evaporation of solvents or dispersants, cooling, heating, UV-light irradiation, and so on, depending on each case.
The large particle sponge silica has a particle size of 8-18 &mgr;m as mentioned above. If only the large particle sponge silica is used, the silica is sedimented in the resin liquid, and the quality of the receiving layer tends to become uneven, and such a disadvantage can occur that the friction-resistance of the receiving layer is lowered and so on. If only the small particle sponge silica having a particle size of 1-7 &mgr;m is used, the receiving performance is lowered so that it is impossible to achieve the purpose of the present invention.
The ‘small particle sponge silica’/‘large particle sponge silica’ weight ratio is preferably 0.1-5 or so. By using such a ratio, it becomes easy to counterbalance disadvantages of both sponge silicas, and to make the best use of their advantages.
With respect to the relation between the amount of the sponge silica and the amount of the resin, it is preferable that the resin/‘sponge silica’ weight ratio is 0.15-1.5. If the ratio is too small, the resistance against friction of the receiving layer will be lowered. If the ratio is too large, the receiving property of the receiving layer will be lowered.
The above-mentioned receiving layer can be formed by printing with a UV-light-curable ink containing a liquid water-soluble monomer, a hydrophobic polymer which is soluble in the monomer, and a filler having an average particle size of 0.1 &mgr;m-30 &mgr;m, followed by curing with UV-light. The term “liquid water-soluble monomer” in the present invention means a polymerizable monomer, which can be freely dissolved in water at a normal temperature, such as a (meth)acrylic acid ester of a polyhydric alcohol, a (meth)acrylic acid ester of an N-alkylaminoalcohol, a polyethylene glycol (meth)acrylate, an N-alkyl (meth)acrylic acid amide, and a vinyl ether of a polyhydric alcohol.
The liquid water-soluble monomer also includes butanediol monoacrylate, 2-hydroxyethyl acrylate, N,N-diethylaminoethyl methacrylate, N,N-dimethylaminoethyl acrylate, N,N-dimethylaminoethyl methacrylate, N,N-dimethylacrylamide, acryloylmorpholine, 2-hydroxyethyl vinyl ether, and the like. A mixture of these monomers can also be used.
Two criteria should be considered upon the selection of a polymer. The first criterion is that a polymer is dissolved in the above-mentioned water-soluble monomer or a mixture consisting of 100 pts. wt. of a water-soluble monomer and 80 pts. wt. or less of a non-water-soluble monomer. The second criterion is that, in case a film is produced with a polymer and is soaked in water at 25° C. for two hours, 100 g of the polymer does not absorb 10 g or more of water, or the polymer does not substantially dissolve in the water.
Hydrophobic polymers which satisfy the above-mentioned two criteria include an alkyl (meth)acrylate (co)polymer, ‘vinyl chloride’-‘vinyl acetate’ copolymer, a polyester, cellulose acetate, cellulose propionate, cellulose acetate butyrate, nitrocellulose, butyral resin, and the like. Preferable ones are cellulose derivatives such as cellulose acetate, cellulose propionate, and cellulose acetate butyrate.
The polymer is added to the liquid water-soluble monomer at a polymer/‘liquid water-soluble monomer’ weight ratio of preferably 0.03-0.8, more preferably 0.05-0.6. If the ratio is smaller than the ranges, the sticking and welding properties of a toner or thermal transcription ink coating film when the obtained receiving layer is printed by thermal transcription and the water-resistance can become low. If polymer is not added, the storage stability and the printability of the ink is extremely bad. If the ratio is larger than the ranges, the transcription of a toner or thermal transcription ink coating film can become bad, and clear images are hardly obtained.
A filler which can be used for the present invention include well known fillers such as silica, talc, clay, zeolite, calcium carbonate, calcium silicate, magnesium carbonate, barium sulfate, mica, synthetic mica, diatomaceous earth, aluminum hydroxide, alumina, and titanium oxide. Judging from the receiving property, water-resistance, and brightness, preferable fillers include silica, synthetic mica, aluminum hydroxide, and alumina. The average particle size of the filler is preferably 0.1-30 &mgr;m, more preferably 0.2-15 &mgr;m.
When designs which are favorable for a user and/or information concerning documents which are held are added to the receiving layer which was thus formed on the outer surface of the sheet material, the designs and/or information are attached according to the following procedure: 1) the designs and/or information are put into a personal computer, 2) the file folder is set in a printer, 3) the receiving layer is printed, and 4) inks are received in the receiving layer.
It is also possi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

File folder does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with File folder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and File folder will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2523811

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.