Electric lamp or space discharge component or device manufacturi – Process – With assembly or disassembly
Reexamination Certificate
2001-06-13
2003-07-22
Ramsey, Kenneth J. (Department: 2879)
Electric lamp or space discharge component or device manufacturi
Process
With assembly or disassembly
C313S309000
Reexamination Certificate
active
06595820
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to field emitter cells and arrays and more specifically to thin-film-edge emitter cells and arrays.
2. Description of the Background Art
Very small localized vacuum electron sources which emit sufficiently high currents for practical applications are difficult to fabricate. This is particularly true when the sources are required to operate at reasonably low voltages. Presently available thermionic sources do not emit high current densities, but rather result in small currents being generated from small areas. In addition, thermionic sources must be heated, requiring special heating circuits and power supplies. Photo emitters have similar problems with regard to low currents and current densities.
Field emitter arrays (FEAs) are naturally small structures which provide reasonably high current densities at low voltages. FEAs typically comprise an array of conical, pyramidal or cusp-shaped point, edge or wedge-shaped vertical structures which are electrically insulated from a positively charged extraction gate and which produce an electron beam that travels through an associated opening in the charged gate.
The classical field emitter includes a sharp point at the tip of the vertical structure and opposite an extraction electrode. In order to generate electrons which are not collected at the extraction electrode, but can be manipulated and collected somewhere else, an aperture is created in the extraction electrode which aperture is significantly larger (e.g. two orders of magnitude) than the radius of curvature of the field emitter. Thus, the extraction electrode is a flat horizontal surface containing an extraction electrode aperture for the field emitter. The field emitter is centered horizontally in the extraction electrode aperture and does not touch the extraction electrode, although the vertical direction of the field emitter is perpendicular to the horizontal plane of the extraction electrode. The positive charges on the edge of the extraction electrode aperture surround the field emitter symmetrically so that the electric field produced between the field emitter and the extraction electrode causes the electrons to be emitted from the field emitter in a direction such that are collected on an electrode (anode) separate and distinct from the extraction electrode. A very small percentage of the electrons are intercepted by the extraction electrode. The smaller the aperture, i.e., the closer the extraction electrode is to the field emitter, the lower the voltage required to generate the electron beam.
It is difficult to create FEAs which have reproducibly small radius-of-curvature field emitter tips of conducting materials or semiconducting materials. Furthermore, it is equally difficult to gate or grid these structures where the gate-to-emitter distance is reasonably small to provide the necessary high electrostatic field at the field emitter tip with reasonably small voltages. The radius of curvature is typically 100-300 angstroms (Å) and the gate-to-emitter distance is typically 0.1-0.5 micrometers (&mgr;m).
Current methods of manufacturing FEAs include wet etching, reactive ion etching, and a variety of field emitter tip deposition techniques. Practical methods generally require the use of lithography which has a number of inherent disadvantages including the high cost of the equipment needed. Furthermore, the high degree of spatial registration required prevents parallel processing, i.e., the fabrication of a very large number of emitters at the same time in a single process.
To a large extent, these prior art problems were overcome by Hsu et al., U.S. Pat. No. 5,584,740 and Gray et al., U.S. Pat. No. 5,382,185, both of which are incorporated herein by reference for all purposes in their entirety. The '740 and '185 patents describe a thin-film-edge emitter cell including a substrate having a protuberance extending therefrom, a conformally deposited insulating layer over the substrate and vertical sidewall of the protuberance, an emitter film conformally deposited upon the insulating layer and the vertical sidewall thereof, and a gate metallization layer parallel to the vertically extending portion of the emitter film. The emitter film extends vertically beyond the protuberance. U.S. Pat. Nos. 5,214,347 and 5,266,155 to Gray, both are which are incorporated-by-reference herein in their entirety for all purposes, describe horizontal thin-film edge field emitters and gated field emitters.
Because of the parallel orientation of the emitter film relative to the gate, the insulating layer between these elements in those patented devices must be sufficiently thin so that, at the emitter tip, the gate generates a field capable of extracting electrons at the tip. The dependence of the gate to tip distance upon insulating film thickness requires a trade off between the reduced susceptibility to pinhole defects and reduced voltage breakdown offered by thicker insulating films and the increased voltage demands caused by the resulting additional gate to tip distance. Additionally, the parallel orientation of the gate layer creates a high capacitance. In turn, this high capacitance increases the RC time constant, reducing frequency response and power efficiency.
SUMMARY OF THE INVENTION
Accordingly, it is an object of this invention to provide an efficient field emitter cell that may be readily and economically fabricated.
It is another object of the present invention to provide a field emitter cell having a low capacitance and good frequency-response.
It is a further object of the present invention to provide an efficient, low voltage, low power field emitter cell that can be fabricated in arrays without special measures to assure correct alignment of the gate electrode and the emitter tip.
It is yet another object of the present invention to provide a field emitter cell at the lowest possible cost with the least number of processing steps.
It is a yet further object of the present invention to provide a field emitter cell in which the emitter is protected against oxidation and blunting.
These and additional objects of the invention are accomplished by a field emitter cell having an electrically conductive substrate. An insulating layer extends over the substrate. This insulating layer has at least one perforation through it. The perforation has essentially vertical sidewalls and a bottom defined by the substrate. A conducting layer, having a perforation therein extends over the insulating layer, and serves as a gate electrode. The perforation of the conducting layer is coincident with the perforation in the insulating layer. A thin-film-edge emitter layer extends upward from the perforation, normal to the gate electrode, to a height just above, just below, at, or in between, the horizontal surfaces of the gate electrode.
The field emitter cell of the present invention may be made by various methods using known lithographic, deposition, and etching steps. In one embodiment, the perforations in the insulating layer are made by stamping, or may be already present by virtue of the nature of the selected insulating layer.
REFERENCES:
patent: 5170092 (1992-12-01), Tomii et al.
patent: 5214347 (1993-05-01), Gray
patent: 5266155 (1993-11-01), Gray
patent: 5382185 (1995-01-01), Gray et al.
patent: 5584740 (1996-12-01), Hsu et al.
patent: 5769679 (1998-06-01), Park et al.
patent: 6084245 (2000-07-01), Hsu et al.
patent: 6168491 (2001-01-01), Hsu et al.
patent: 6333598 (2001-12-01), Hsu et al.
patent: 6350628 (2002-02-01), Cheng et al.
patent: WO 00/60630 (2000-10-01), None
Fleming, J.G., et al J. Vac. Sci. Technol. B14(3), May/Jun. 1996, pp 1958-1962.
Gray Henry F.
Gray James R.
Hsu David S. Y.
Gray James R.
Hunnius Stephen T.
Karasek John J.
Ramsey Kenneth J.
The United States of America as represented by the Secretary of
LandOfFree
Field emitter cell and array with vertical thin-film-edge... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Field emitter cell and array with vertical thin-film-edge..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Field emitter cell and array with vertical thin-film-edge... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3047488