Field emission-type electron source

Electric lamp and discharge devices – Discharge devices having a thermionic or emissive cathode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S495000

Reexamination Certificate

active

06720717

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a field emission-type electron source for emitting electron beams by means of the field emission phenomenon.
2. Description of the Prior Art
Heretofore, there has been well known in the art a field emission-type electron source (hereinafter referred to as “electron source” for brevity), as disclosed, for example, in Japanese Patent Publication No. 2987140 and Japanese Patent Laid-Open Publication No. 2001-126610.
The electron source disclosed in Japanese Patent Publication No. 2987140 includes a lower electrode, a surface electrode (upper electrode) composed of a metal thin-film, and an electron transit layer (strong-field drift layer) provided between the lower and surface electrodes. The surface electrode is disposed opposed to the lower electrode with interposing the electron transit layer therebetween. When a certain voltage is applied between the lower and surface electrodes such that the surface electrode has a higher potential than that of the lower electrode, the resulting electric field between the electrodes induces the flow of electrons from the lower electrode to the surface electrode through the electron transit layer.
For example, an oxidized or nitrided porous polycrystalline silicon layer is used as the electron transit layer. In activating the electron source, a collector is positioned opposed to the surface electrode while exposing the surface electrode to a vacuum space. Then, a DC current is applied between the surface and lower electrodes such that the surface electrode has a higher potential than that of the lower electrode, and simultaneously another DC current is applied between the collector and surface electrodes such that the collector has a higher potential than that of the surface electrode. As a result of the above operation, electrons are injected from the lower electrode to the electron transit layer, and then emitted through the surface electrode after drifting within the electron transit layer. Alteration such as oxidation of the surface of the surface electrode causes deterioration in the efficiency of emitting electrons or the electron emitting efficiency. Thus, the surface electrode is typically made of chemically stable metal (e.g. noble metal such as gold). In this case, the thickness of the surface electrode is set at about 10 nm.
In electron sources, the terms “diode current Ips” and “emission current (emission electron current) Ie” generally mean a current flowing between the surface and lower electrodes and a current flowing between the collector and surface electrodes, respectively. Greater ratio of the emission current Ie to the diode current (Ie/Ips) provides higher electrode emitting efficiency [(Ie/Ips)×100(%)]. The above electron source can emit electrons even if the DC voltage to be applied between the surface and lower electrodes is in a low range of about 10 to 20 V. Thus, the electron source can exhibit enhanced electron emission characteristics having a low dependence on vacuum degree, and emit electrons stably without occurrence of the so-called popping phenomenon during electron emission.
The lower electrode of the electron source comprises a semiconductor substrate having a resistivity relatively close to that of a conductor, and an ohmic electrode formed on the back surface of the semiconductor substrate. Alternatively, the lower electrode comprises an insulative substrate and a metal conductive layer formed on the insulative substrate.
On the other hand, the electron source disclosed in Japanese Patent Laid-Open Publication No. 2001-126610 comprises a surface electrode partially including a carbon region made of carbon or carbon compounds. This electron source can advantageously prevent excessive diode current Ips to provide enhanced electron emitting efficiency.
The conventional electron sources as described above are used in a vacuum-sealed state. In this connection, an assembling process of such electron sources involves a relatively high-temperature thermal process including a vacuum-sealing process (which is performed at about 500° C.), which inevitably increases the electrical resistance of the surface electrode and/or the lower electrode. The increased electrical resistance makes it difficult for voltage to be adequately applied between the surface and lower electrodes and/or between the collector and surface electrodes, resulting in deteriorated electron emission characteristics (such as lowered emission current or electron emitting efficiency).
The surface electrode is composed of a metal thin-film. The thickness of the surface electrode is set at 10 nm as in the foregoing electron source. A gold thin-film commonly used as the surface electrode is involved with agglomeration at a temperature of 400° C. or more. The resulting agglomeration deteriorates the thickness uniformity and continuity of the thin film, and thereby the electrical resistance of the surface electrode is increased, resulting in deteriorated electron emission characteristics. Tungsten and aluminum are known as metal having high resistibility to such agglomeration. However, if the surface electrode is made of tungsten or aluminum, the surface of the electrode will be subject to oxidation, which leads to deteriorated electron emitting efficiency.
Similarly, the lower electrode has an increased electrical resistance. The following factors are assumed as the reason for the increased electrical resistance.
(1) Agglomeration of metal
(2) Decrease in the film thickness of the lower electrode due to thermal diffusion of atoms (metal atoms) constituting the lower electrode toward a layer (e.g. electron transit layer) deposited on the lower electrode
(3) Decrease in the film thickness of the lower electrode due to thermal diffusion of atoms constituting a layer (e.g. electron transit layer) deposited on the lower electrode toward the lower electrode
(4) Increase in resistivity of the lower electrode
In addition to the aforementioned electron sources, various modified electron sources for emitting electrons by means of the field emission phenomenon have been proposed. For example, one of the proposed electron sources has a MIM (Metal-Insulator-Metal) structure including an insulating layer serving as the electron transit layer. Another electron source has a MIS (Metal-Insular-Semiconductor) including a semiconductor layer provided between the electron transit layer and the lower electrode.
In view of industrial availability of the various electron sources, it is desired to provide increased emission current and enhanced electron emitting efficiency contributing to reduction in power consumption. In all of the above electron sources, electrons are emitted through the surface electrode. Thus, the electron emitting efficiency can be increased by reducing an energy loss due to electron scattering within the surface electrode. From this point of view, it is contemplable to reduce the thickness of the surface electrode insofar as device characteristics are not adversely affected. For example, Japanese Patent Laid-Open Publication No. 2001-243901 discloses an electron source intended to provide enhanced electron emitting efficiency based on the above approach. In this electron source, a surface electrode includes a metal thin-film portion having a flat surface, and a plurality of island-shaped raised portions protruding from the surface of the metal thin-film portion, the raised portions being continuously and integrally formed with the thin-film portion. However, the respective metal raised portions of this electron sources are connected with each other by the metal thin-film portion, and thereby the film thickness of the metal thin-film portion will impose a restriction on a lower limit of the electrical resistance of the surface electrode. Thus, even if it is tried to achieve a specific electrical resistance of the surface electrode required for device characteristics, there exists such an disadvantage that the thickness of the metal thin-film portion can

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Field emission-type electron source does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Field emission-type electron source, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Field emission-type electron source will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3198623

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.