Field device management system

Data processing: measuring – calibrating – or testing – Measurement system – Remote supervisory monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S182000, C702S183000, C702S184000, C700S011000, C706S050000, C709S223000, C340S870030

Reexamination Certificate

active

06317701

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to field device management in industrial process systems and similar systems.
FIELD OF THE INVENTION
Field devices for industrial processes generally signify regulating devices, control devices, sensors, transducers, and the like, directly connected to the process. A typical field device is a control valve provided with a valve controller, such as the valve controller ND800 of Neles Controls Oy. So-called intelligent field devices are provided with a control logic or software, which makes it possible to control the field device locally for instance by means of a suitable control algorithm, to collect status and measurement data and/or to communicate with a field management system in accordance with a field communication protocol, such as HART (Highway Addressable Remote Transducer). In addition, intelligent field devices contain that much diagnostics at present that a field device is capable of informing of its failure. This information can be utilized for recognizing the device requiring maintenance, which reduces the maintenance costs because unnecessary device testings are avoided. Moreover, the utilization ratio of a plant (factory) increases when unanticipated shutdowns decrease.
Typical field management systems are PC programs provided with graphical user interfaces and comprising properties as follows: configuration of field device, configuration database, maintenance control of field device on the basis of status data received from field device, and status database of field device. Examples of commercial field management systems are: Field Manager manufactured by Fisher-Rosemount Inc.; Documint manufactured by Honeywell Inc.; Cornerstone manufactured by Applied Technologies Inc.; Smartvision manufactured by Elsag-Bailey.
The maintenance control function is typically automatic and can be configurated by the user. At maintenance control, a software scans the field devices as desired by the user and stores the status data desired by the user in the status database together with a time stamp. The status database can be browsed by means of a graphical user interface, which may be located anywhere in the plant. In this way, universal status data, which are very limited as far as e.g. maintenance data are concerned, are received from the field device. Status data items typically describing the condition of the device are: in condition and out of condition. This is often not enough for predictive or preventive maintenance.
Plant operators use so-called control room applications when running the plant by actual process control automation systems. Because the operator monitors the process day by day, he could start a maintenance step of a predetermined field device in time, if he were informed of the condition of said field device. A problem is to bring an information on a failure in a field device to the knowledge of the operator or maintenance person of the plant, because automation systems do not support digital field communication protocols, such as HART. A reason for this is that they are primarily regarded as configuration protocols of a field device or the communication protocol does not support a transmission of operating status data of the field device. The diagnostics of the field device is clearly an area belonging to the field device supplier and not to the supplier of the actual automation system. The present control room applications show only the data required for operating the process, and the operator has to check the status of the field devices relating to said process in a separate field management software. To use a separate field device management software in the control room is problematic for the operator, because there is no connection between the field devices displayed by the software and the process to be monitored. This leads to the fact that the operator primarily monitors the process and does not react to the condition of the field device until it causes interference with the process.
The significance of diagnostics in intelligent field devices will continue to increase in a field bus environment. It is then especially important that the field device management concept and also the outputs and reports provided by it are clear and simple enough for the users. The present methods are not simple and sophisticated enough for this purpose. It is to be assumed that the two-way communication of the field devices will provide a flood of information in maintenance control software and automation systems. Accordingly, they rather increase the amount of work than decrease it. On the other hand, in order to achieve a simple and easy-to-use concept of diagnostics, the tools already existing in the control rooms should be utilized as much as possible. User interfaces of new application programs are not desired in the control room, because they require further training and maintenance and increase the complexity of running and monitoring the process. Actually, a user-friendly diagnostic system should not be visible to the user as a software provided with a separate user interface at all.
BRIEF DESCRIPTION OF THE INVENTION
An object of the invention is a maintenance management of field devices, which is reliable, simple and easy to use for the user.
This is achieved by a system for the maintenance management of field devices in industrial processes, each of them comprising a local maintenance management system. The local maintenance management systems of said industrial processes are arranged to form a network and to communicate with each other and/or with a centralized maintenance management unit and to transmit information relating to the maintenance management of field devices so as to enable learning on network level.
Another object of the invention is a maintenance management system supervising field devices in industrial processes. The maintenance management system is arranged
to communicate with respective maintenance management systems of industrial processes of other plants located geographically apart from each other, either directly or over a centralized maintenance management unit,
to transmit and receive information on detected properties of managed field device types, and
to adjust maintenance management parameters of the field device types on the basis of said received data in a self-learning manner.
Still an object of the invention is a server for the maintenance management of field devices in industrial processes, each of them comprising a local maintenance management system. The server is connected to a network of local maintenance management systems and controls an exchange of information relating to the maintenance management of the field devices, the exchange taking place between the local maintenance management systems for learning on network level.
The basic idea of the invention is to network the maintenance management systems of industrial processes of separate plants located geographically apart from each other in such a way that they are capable of communicating with each other or with a centralized maintenance management unit and transmitting information on maintenance parameters of different field device types. In this way, the experience obtained from or observed in one industrial process can be transferred to other industrial processes and applications of similar plants as well. By utilizing this globally collected cumulative information, it is possible to improve and specify the diagnostics of the separate local maintenance management systems essentially faster than in case if a local maintenance management system were independent and the diagnostics were changed on the basis of local experience only.
In an embodiment of the invention, local systems communicate directly with each other. Each local maintenance management system is then preferably arranged to control local maintenance management parameters independently on the basis of the information received from the other local maintenance management systems.
In a preferred embodiment of the invention, the local systems communicate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Field device management system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Field device management system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Field device management system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2594469

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.