Field crop harvesting and loading vehicle

Conveyors: power-driven – Conveying apparatus entirely supported by mobile ground... – Conveyor shiftably mounted on vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S313000, C056S015100, C414S503000, C414S508000, C414S523000

Reexamination Certificate

active

06758317

ABSTRACT:

TECHNICAL FIELD
This invention pertains to the field of vehicular devices, which assist in the harvesting, and palletizing of agricultural products.
BACKGROUND OF THE INVENTION
Vehicles for many years have been adapted and modified to assist in the harvesting of agricultural products. Even with the assistance of vehicles, harvesting of certain crops, particularly small and delicate fruit such as strawberries, are extremely labor intensive.
Strawberry harvesting requires the backbreaking work of many laborers. Boxes, referred to as flats, are used for collection of the fruit. For a typical strawberry field, workers will carry the empty flats and harvest the strawberries by hand, placing the gathered fruit into these flats. When filled, each flat is typically carried to the edge of the field where they are palletized with other flats. The carrying of filled flats is extremely inefficient; particularly when the flat is filled near the middle of a field. A worker must carry the flat, sometimes in muddy conditions, to the end of the field and then return to continue picking fruit. Studies have shown that lost time attributed to carrying loaded flats to the end of a field for palletizing can reach 30%.
Once palletized, the strawberry flats are then transported to a facility for refrigeration. Prior to wholesale distribution, it is a typical industry practice to cool the freshly picked fruit to about a temperature of 35 degrees F. To obtain this fruit temperature, strawberries harvested at 70 degrees F will require approximately 3 hours to cool while strawberries harvested at 50 degrees F require only 20 minutes.
The harvest season for strawberries can last approximately 6 months. It is typical industry practice to reinspect the strawberry plants every three days and harvest the ripened fruit.
As stated earlier, various vehicular designs have been used in the prior art to assist laborers for harvesting fruit. One of these prior art designs was disclosed in U.S. Pat. No. 4,292,784 issued to Abatti et. al. Abatti et. al. teaches a vehicle which utilizes a pair of conveyors which can span many rows of plants. The vehicle was designed for harvesting large produce such as watermelons.
One problem associated with vehicles utilizing elongated conveyors is that the turning radius of the vehicle is the wingspan of at least one of the conveyors. When the vehicle reaches the end of a row, the field must have sufficient clearance to permit the vehicle to be turned 180 degrees and aligned with rows next to be harvested. The increased turning radius of the vehicle can be a problem; especially if used in fields having space limitations. If insufficient space is available, the vehicle can not be turned without first removing or disconnecting at least one of the conveyors. Although it is possible to implement, this would be an extremely inefficient use of time.
SUMMARY OF THE INVENTION
My invention comprises a self-powered vehicle in which all vital functions are preferably hydraulically operated. The vehicle incorporates the use of a pair of rotating or displacement arms located on opposite sides and operably connected to the vehicle body; the operation of which will be discussed shortly. Connected to and supported by each arm is a respective conveyor the length of which is preferably from the edge of the vehicle along the front or rear of the vehicle to its midpoint.
The vehicle tires can be rotated into any orientation upon the horizontal plane. Therefore, terminology such as front and rear will be limited. The rear of the vehicle describes the side of the vehicle facing the conveyors when they are in harvesting position as will be discussed shortly. The front will be the side opposite from the rear.
The two conveyors comprise a conveyor belt system. Each conveyor is comprised of a conveyor belt and associated assembly. The conveyor belt assembly essentially runs the entire length of each conveyor and comprises the rotating belt and hydraulically operated belt drive. Preferably, each conveyor includes an elongated trough top portion positioned above the lower conveyor belt and associated assembly. The top and lower portions are spaced apart from one another and supported by metal framing. The vertical spacing is necessary so that a flat filled with strawberries and preferably two flats stacked upon one another can be positioned upon the conveyor belt and not contact the bottom side of the trough.
The troughs however, do not span the entire length of each conveyor, specifically near the midpoint of the vehicle adjacent to the other conveyor. This is so that workers on the vehicle can lift the filled flats vertically off the conveyor belt without interference from the trough. The unloading procedure will be discussed in greater detail below.
The frame construction of each conveyor can be of any suitable metal such as high strength aluminum, fiberglass, etc. Preferably, the conveyor framing is constructed of steel.
The conveyor belt on each conveyor operates so that any flat positioned on it will be transported towards the rear midpoint of the vehicle. The adjacent ends of each conveyor are also bolted to one another to provide additional structural stability.
In the preferred embodiment, the conveyor belt system incorporates a pair of wing conveyors which are operatively connected to the distal ends of a respective conveyor that essentially extends the wing-span of the conveyor belt system. The wing conveyors are configured similar to the conveyors in that they comprise a top trough and conveyor belt assembly and similar vertical spacing there between.
Therefore, as used in this specification, the conveyor belt system comprises two conveyors so that their respective conveyor belt assemblies rotate in a direction to deliver objects placed upon it toward the other conveyor. In the preferred embodiment, the conveyor belt system also includes a pair of wing conveyors.
When a wing conveyor is desired for use, it is attached to and operatively connected to an adjacent conveyor, so that its belt assembly will rotate in the same direction. The conveyor belt system can span many rows of plants on either side of the vehicle.
As discussed earlier, each conveyor preferably comprises an elongated trough located above each conveyor belt assembly which is sized to hold empty boxes or flats. Most preferably, the trough is sized to hold a single row of empty flats so that bridging can be avoided. The adjacent ends of the conveyor and wing conveyor are essentially on the same plane or level so that empty flats can be slid with ease from the conveyor trough to the wing conveyor trough and filled flats can travel on the wing conveyor and then pass onto the adjacent conveyor toward the rear midpoint of the vehicle.
The rotating arms mentioned earlier serve an important function. Each arm is designed to work in tandem with the other arm and displace the conveyor belt system (i.e. wing-conveyor/conveyor/conveyor/wing-conveyor) from a horizontal loading position on one side of the vehicle, along an arc path over the vehicle to a second loading position located on the opposite side of the vehicle.
Since the conveyor system is substantially arc displaced 180 degrees over the vehicle, in order to maintain the orientation of the elongated trough above the conveyor belts, a leveling means is employed to maintain proper orientation. The leveling means comprises an electronic level switch which is operatively connected to a hydraulically powered rotary actuator that maintains the desired orientation. Preferably, in order to facilitate a smooth displacement of the conveyor belt system by the pair of rotating arms, the frame of each conveyor which is adjacent to one another, is physically connected to one another.
The vehicle is also equipped with a hydraulic powered rotary actuator operatively coupled to each tire which permits the vehicle's tires to be orientated in different directions along the horizontal plane. This feature, combined with the function of the rotating arms, eliminates the need for maximum clearance along

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Field crop harvesting and loading vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Field crop harvesting and loading vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Field crop harvesting and loading vehicle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3192568

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.