Fictitious virtual centripetal calculation and simulation...

Amusement devices: games – Including means for processing electronic data – Perceptible output or display

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C463S007000, C463S030000, C463S001000

Reexamination Certificate

active

06322448

ABSTRACT:

TECHNICAL FIELD
The present invention relates to the processing of images in a virtually set-up game space (hereinbelow called “virtual space”) (hereinbelow called “virtual images”); in particular, it relates to image processing for a game whereby the movement of a virtual model that is set up in virtual space (for example called a “character”) on a screen can be represented more realistically. This image processing technique is suitable in particular for 3D video games machines.
BACKGROUND ART
Due to the development of computer graphics (CG) technologies, it has become possible to represent a virtual space (also called “virtual world”) that is set up in virtual fashion three-dimensionally and in real time. This is the technical field of video games machines: these have been developed in recent years and incorporate a central processing unit (CPU) capable of high speed computation and a video display processor (VDP) and enable such computer graphics technologies to be utilised at high speed and in economical fashion.
In such a video games machine, the content of game play changes continually depending on the actions of the user (also called the game player or player), so the objects that are displayed have to be moved freely at high speed in virtual space. To this end, usually a model constituting an object to be displayed (for example a character) is constituted of a set of polygonal fragments called polygons of triangular or quadrilateral shape, and the movement of such models is displayed by simultaneously altering the spatial position of these polygons.
Also, when specified portions or faces of objects to be displayed such as the arms or legs of characters were to be moved simultaneously, a polygon data group consisting of an assembly of a plurality of polygons was taken as a unit and a spatial position was given to each polygon data group, so that the specified portions or faces could be moved simultaneously.
In recent years, so-called 3D (three-dimensional) games have attracted attention in the market, in which a character is made up of polygons and an image is represented on a monitor in which the movement of the character in virtual space is captured from a virtual viewpoint; simulations of fights between a plurality of warriors are particularly popular (for example, “Virtual Fighter” (trade mark) made by Sega Enterprises Limited). In such a fighting simulation game, a player rapidly operates a stick or pad or button attached to a controller to make a warrior represented on the screen perform actions in accordance with commands determined by operation of the stick etc. The movements of the warrior are called “motion” and data in order to implement such motion is acquired using the “motion capture” technique. This data is then processed, if need be, and is utilised as final motion data in a 3D video games machine. In such a video game, in order to raise the product value, it is desirable to represent the movement of the character more realistically. More specifically, this consists in for example adding more varieties of movement whilst approaching very closely to the actions of an actual warrior. However, since the anticipated movements of a character extend over a very wide range of possibilities, there are many problems that still need improvement in order to achieve such an objective. Of course, consideration has been given to for example compiling beforehand all the desired motion data and storing this in memory and obtaining characteristic expressions in order to get such motion, but the problem is that a large amount of data is required for this, which is impossible to process in real time.
A chief object of the present invention is therefore to provide an image processing technique for games whereby the amount of calculation and/or the amount of data required for image processing can be greatly reduced and whereby the movement of the character on the screen can be expressed more in real time and more realistically.
First specific aspects of a problem that was experienced in conventional video games machines from the point of view of this object are as follows.
A1. In a 3D video game, since the image on the two-dimensional screen from the virtual viewpoint is represented by performing a projection conversion, it is difficult to move the warrior in the depth direction of the screen (z direction of virtual space) i.e. in the direction of the player's gaze, so no consideration at all was given to enabling a warrior to walk around other warriors. To improve such movement around the characters is therefore a first specific object of the present invention.
A2. With a conventional 3D video games machine, there was the problem that, since the images were displayed from a virtual viewpoint, if a structure such as a wall was arranged in virtual space in a position such as to screen the warrior, display was effected with the character blocked out. Accordingly, a further specific object of the present invention is to effect display in which this situation that the character is blocked out by a structure is improved.
A3. In a conventional video games machine, the method was adopted of generating the motion of the character sequentially using for example a spline function, or the method of effecting reproduction of predetermined patterns in sequential frames. However, with the conventional video games machine, this motion was fixed, so it was not possible to correct the motion to match the movement of a character on the other side etc. Accordingly, a further specific object of the present invention is to enable such motion correction to be performed.
Further, as a derivation from the viewpoint of the above chief object, in addition to the first aspects described above, it is desired to perform screen display with improved dramatic effect such as character movement, in order to raise product value. Second aspects of the problems of conventional video games machines when this demand is taken into consideration may be described specifically as follows.
B1. “Motion blur” is known as a technique for improving the dramatic effect of a CG image. By means of such motion blur, a large number of rays are generated at a single pixel, and coloration is applied wherein these are averaged, thereby enabling a picture to be created that shows “out-of focus” or movement. Furthermore, in recent years, in the field of CG video such as video games, in order to raise the dramatic effect further, in movement of a character, display is effected together with residual images such as are liable to be produced physiologically in human visual perception. For example, residual images may be attached to the track of a sword that is being waved by a warrior. Persons skilled in the art would therefore calculate polygons and to constitute residual images matching the motion of the warrior and display these residual images in the vicinity of the warrior.
However, the anticipated movements of characters are extremely diverse, so compiling polygons for a large number of modes of residual images matching all these cases and storing these in memory restricts the performance of a limited computer graphics device and furthermore calculation of residual-image polygons in conformity with the motion of the character puts a large load on the computer graphics device. Accordingly, in the formation of a CG image, yet a further specific object of the present invention is to make it possible to display residual images simultaneously with the actual image screen without large increase in calculation load (or more precisely, reducing the load), even though measures are taken to raise the dramatic effect.
B2. In a games device using a conventional image processing device, flying material such as sand or water splashes is displayed on the screen (for example “Sega Rally” (trade mark) manufactured by Sega Enterprises Limited). However, since such water splashes or sand scattering consisted merely in mapping texture on to polygons, it was not possible to reflect accurately the movement of the model (car etc.) by the flying

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fictitious virtual centripetal calculation and simulation... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fictitious virtual centripetal calculation and simulation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fictitious virtual centripetal calculation and simulation... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2592792

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.