Fibronectin peptides-based extracellular matrix for wound...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S013800, C514S014800, C514S015800, C514S016700, C514S017400, C514S018700, C530S326000, C530S327000, C530S328000, C530S329000, C530S330000, C530S331000, C530S381000

Reexamination Certificate

active

06194378

ABSTRACT:

FIELD OF THE INVENTION
The subject invention is directed to an extracellular matrix for wound healing and to a method of enhancing wound healing using the extracellular matrix.
BACKGROUND OF THE INVENTION
Throughout this application various publications are referenced, many in parenthesis. Full citations for each of these publications are provided at the end of the Detailed Description. The disclosures of each of these publications in their entireties are hereby incorporated by reference in this application.
It is estimated that in 1992 (US), 35.2 million wounds required major therapeutic intervention (Medical Data International, Inc. 1993). Surgical incisional wounds are performed with aseptic technique, and are closed by primary intention. Most repair and heal uneventfully. Many traumatic wounds and cancer extirpations, however, must be left open to heal by secondary intention. Furthermore, chronic wounds have significant tissue necrosis and fail to heal by secondary intention. It is estimated that 5.5 million people in the US have chronic, nonhealing wounds and that their prevalence is increasing secondary to the increase in age-related diseases, the increase in Acquired-immune Deficiency Syndrome (AIDS), and the increase of radiation wounds secondary to cancer intervention. In the US approximately 1.5-2.5 million people have venous leg ulcers; 300,000-500,000, diabetic ulcers; and 2.5-3.5 million, pressure ulcers (Callam et al. 1987; Phillips and Dover 1991; Lees and Lambert 1992; Lindholm et al. 1992). These acute and chronic open wounds require long-term care and procedures that include skin grafting and tissue flaps, debridement, frequent dressing changes and administration of pain medications. This care is costly and labor intensive. Furthermore, these wounds have a severe impact on the patients' quality of life. The chronic dermal ulcerations can cost as much as $40,000 each to heal and more disappointing is that 50% reappear within 18 months of healing. Chronic dermal ulcers are also associated with mortality. As many as 21% of patients in intermediate-care facilities with pressure ulcers die (Bergstrom et al. 1994).
Although multiple millions of dollars have been spent on the development of numerous recombinant growth factors (Abraham and Klagsbrun 1996; Heldin and Westermark 1996; Nanney and King 1996; Roberts and Sporn 1996) and organotypic skin replacements (Boyce et al. 1995) for use in open wounds over the past decade, the evidence of cost-effective benefit is meager thus far (Brown et al. 1989; Robson et al. 1992a; Robson et al. 1992b; Phillips et al. 1993).
Many attempts have been made to produce a composition which can be used to facilitate wound repair. Many of these compositions involve collagen as a component. U.S. Pat. Nos. 4,950,483 and 5,024,841 each discuss the usefulness of collagen implants as wound healing matrices. U.S. Pat. No. 4,453,939 discusses a wound healing composition of collagen with a fibrinogen component and a thrombin component, and optionally fibronectin. U.S. Pat. No. 4,970,298 discusses the usefulness of a biodegradable collagen matrix (of collagen, hyaluronic acid, and fibronectin) for wound healing. Yamada et al. (1995) disclose an allogeneic cultured dermal substitute that is prepared by plating fibroblasts onto a spongy collagen matrix and then culturing for 7 to 10 days. Devries et al. (1995) disclose a collagen/alpha-elastin hydrolysate matrix that can be seeded with a stromal-vascular-fraction of adipose tissue. Lamme et al. (1996) disclose a dermal matrix substitute of collagen coated with elastin hydrolysate. U.S. Pat. No. 5,489,304 and Ellis and Yannas (1996) each disclose a collagen-glycosaminoglycan matrix.
There are also numerous compositions which involve hyaluronic acid (HA) as a component. Ortonne (1996), Borgognoni et al. (1996), and Nakamura et al. (1997) each discuss the usefulness of HA for wound healing. In Nakamura et al. (1997), the HA was combined with chondroitin sulfate in one series of experiments. In U.S. Pat. No. 5,604,200, medical grade HA and tissue culture grade plasma fibronectin were used in combination with calcium, phosphate, uric acid, urea, sodium, potassium, chloride and magnesium to create a moist healing environment that simulates the fetal in utero wound healing matrix. U.S. Pat. No. 5,631,011 discloses a composition of HA and fibrin or fibrinogen.
Various other compositions have also been explored for their wound healing capabilities. Kratz et al. (1997) used a gel of heparin ionically linked to chitosan. Bartold and Raben (1996) studied platelet-derived growth factor (PDGF). Henke et al. (1996) disclosed that chondroitin sulfate proteoglycan mediated cell migration on fibrinogen and invasion into a fibrin matrix, while Nakamura et al. (1997) concluded that chondroitin sulfate did not affect wound closure in a corneal epithelial wound. Henke et al. (1996) also disclosed that an anti-CD44 antibody blocked endothelial cell migration on fibrinogen. U.S. Pat. No. 5,641,483 discloses topical gel and cream formulations containing human plasma fibronectin for healing of cutaneous wounds. Schultz et al. (1992) disclose a composition of epidermal growth factor (EGF), fibronectin, a synthetic collagenase inhibitor, and Aprotinin.
Various studies involving fibronectin (FN) and/or particular fibronectin peptides and wound healing have also been reported. Many of these studies involve the RGD sequence, part of the cell binding domain of FN (see Schor et al. 1996; Steed et al. 1995; Sponsel et al. 1994; Kartha and Toback 1992; Kishida et al. 1992). Schor et al. (1996) disclose that only the gelatin binding domain of FN (GBD) stimulates fibroblast migration into a 3-D matrix of native type I collagen fibrils at femtomolar concentrations; whereas peptides of the other FN functional domains do not stimulate fibroblast migration in this assay at femtomolar to nanomolar concentrations. Schor et al. (1996) also disclose that the RGDS-containing cell binding domain of FN does, however, stimulate fibroblast migration in the transmembrane (or “Boyden chamber”) assay. Steed et al. (1995) disclose that the RGD peptide matrix (known as Argidene Gel™ or as Telio-Derm Gel™) promoted wound healing. On the contrary, Sponsel et al. (1994) disclose that an RGD peptide impaired healing of a mechanical wound made in a confluent monolayer of one epithelial cell line. Kartha and Toback (1992) also concluded that an RGDS peptide completely inhibited cell migration into a wound area. Kishida et al. (1992), however, disclose that an RGD-albumin conjugate adsorbed onto a polyurethane sponge exhibited tissue ingrowth-promoting activity.
Other portions of FN have also been studied for wound healing activity. U.S. Pat. No. 5,198,423 studied the effects of a polypeptide containing a cell binding domain and a heparin binding domain of FN on wound healing. U.S. Pat. No. 4,589,881 studied the effects of a 108 aa polypeptide fragment of FN on wound healing, as well as a biologically active fragment thereof. Sponsel et al. (1994) studied the effect of the tetrapeptide REDV and the peptide LDVPS on wound healing.
The severity of the problem of chronic, nonhealing wounds dictates that continual efforts be made to define new and more effective matrices and methods for facilitating wound healing.
SUMMARY OF THE INVENTION
This need is met by the subject invention which provides an extracellular matrix for enhancing wound healing. The extracellular matrix comprises peptides from two or more fibronectin domains in a backbone matrix. The extracellular matrix facilitates wound healing by providing an environment that intrinsically recruits new tissue cells to the wound site.
A method of enhancing wound healing is also provided by the subject invention. The method comprises applying the extracellular matrix as so defined to a wound.
Using an in vitro model of cell movement across 3-dimensional extracellular matrix boundaries that simulates early wound repair (Greiling and Clark 1997), the experiments related to the subject invention establish

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fibronectin peptides-based extracellular matrix for wound... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fibronectin peptides-based extracellular matrix for wound..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fibronectin peptides-based extracellular matrix for wound... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2597044

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.