Fibers and fabrics with insulating, water-proofing, and...

Coating processes – Solid particles or fibers applied

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S393400

Reexamination Certificate

active

06723378

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Endeavor
The present invention relates to fibers and fabrics and more particularly to fibers and fabrics with insulating, waterproofing, and flame-resistant properties.
2. State of Technology
U.S. Pat. No. 6,040,251 for garments of barrier webs by J. Michael Caldwell, patented Mar. 21, 2000, incorporated herein by reference, provides the following background information, “Barrier fabrics are generally characterized by being impervious to penetration by liquids. There is a class of barrier fabrics which, additionally, are vapor permeable to provide what is termed breathability. Barrier fabrics are especially useful in the medical career apparel garments. The barrier fabrics in the prior art can be generally classified as disposable and reuseable. Disposable fabrics are typically constructed from nonwovens made from light weight synthetic fibers or synthetic fibers blended with natural fibers. Performance of disposable nonwoven fabrics in terms of liquid repellency and flame retardancy are quite acceptable. Reusable fabrics are normally woven and may be constructed from cotton or cotton/polyester blends of a high thread count to provide a physical barrier to prevent or reduce the spread of infectious materials and vectors.
While reusable woven fabrics generally offer more comfort in terms of drapeability, breathability, transmission of heat and water vapor, stiffness, etc., and improved (reduced) cost per use, they lack the liquid repellency the market has come to expect on the basis of experience with the disposables, especially after repeated launderings and/or steam (autoclave) sterilizations.
Woven reusable surgical barrier fabrics must meet or exceed the current criteria for National Fire Protection Association (NFPA-99) and the Association of Operating Room Nurses (AORN) “Recommended Practices-Aseptic Barrier Material for Surgical Gowns and Drapes” used in constructing operating room wearing apparel, draping and gowning materials. To be effective, the fabric must be resistant to blood and aqueous fluid (resist liquid penetration); abrasion resistant to withstand continued reprocessing; lint free to reduce the number of particles and to reduce the dissemination of particles into the wound; drapeable; sufficiently porous to eliminate heat buildup; and flame resistant.
Reusable fabrics should withstand multiple laundering and, where necessary, sterilization (autoclaving) cycles; be non-abrasive and free of toxic ingredients and non-fast dyes; be resistant to tears and punctures; provide an effective barrier to microbes, preferably be bacteriostatic in their own right; and the reusable material should maintain its integrity over its expected useful life.
None of the fabrics or the fabrics taught in the prior art has the physical characteristics of (1) being substantially resistant or impermeable to liquids, such as water, (2) being permeable to gases, and (3) impermeable to microorganisms. In addition, none of the fabrics taught in the prior art teach or suggest fabrics that are capable of selectively removing or retaining microorganisms or other particles or molecules from the surrounding milieu.
In the prior art, it has been proposed to treat porous webs, especially fabrics, with silicone resins and also with fluorochemicals. Conventional treatments of webs fall into the general categories of (i) surface coatings and (ii) saturations or impregnations.
For example, U.S. Pat. Nos. 3,436,366; 3,639,155; 4,472,470; 4,500,584; and 4,666,765 disclose silicone coated fabrics. Silicone coatings are known to exhibit relative inertness to extreme temperatures of both heat and cold and to be relatively resistant to ozone and ultraviolet light. Also, a silicone coating can selectively exhibit strength enhancement, flame retardancy and/or resistance to soiling. Fluorochemical treatment of webs is known to impart properties, such as soil resistance, grease resistance, and the like.
Prior art fluorochemical and silicone fabric treatment evidently can protect only that side of the fabric upon which they are disposed. Such treatments significantly alter the hand, or tactile feel, of the treated side. Prior silicone fabric coatings typically degrade the tactile finish, or hand, of the fabric and give the coated fabric side a rubberized finish which is not appealing for many fabric uses, particularly garments.
U.S. Pat. No. 4,454,191 describes a waterproof and moisture-conducting fabric coated with a hydrophilic polymer. The polymer is a compressed foam of an acrylic resin modified with polyvinyl chloride or polyurethane and serves as a sort of “sponge,” soaking up excess moisture vapor. Other microporous polymeric coatings have been used in prior art attempts to make a garment breathable, yet waterproof.
Various polyorganosiloxane compositions are taught in the prior art that can be used for making coatings that impart water-repellency to fabrics. Typical of such teachings is the process described in U.S. Pat. No. 4,370,365 which describes a water repellent agent comprising, in addition to an organohydrogenpolysiloxane, either one or a combination of linear organopolysiloxanes containing alkene groups, and a resinous organopolysiloxane containing tetrafunctional and monofunctional siloxane units. The resultant mixture is catalyzed for curing and dispersed into an aqueous emulsion. The fabric is dipped in the emulsion and heated. The resultant product is said to have a good “hand” and to possess waterproofness.
This type of treatment for rendering fabrics water repellent without affecting their “feel” is common and well known in the art. However, it has not been shown that polyorganosiloxanes have been coated on fabrics in such a way that both high levels of resistance to water by the fibers/filaments and high levels of permeability to water vapor are achieved. As used herein, the term “high levels of permeability to water vapor” has reference to a value of at least about 500 gms/m.sup. 2/day, as measured by ASTM E96-80B. Also, as used herein, the term “high level of waterproofness” is defined by selective testing methodologies discussed later in this specification. These methodologies particularly deal with water resistance of fabrics and their component fibers.
Porous webs have been further shown to be surface coated in, for example, U.S. Pat. Nos. 4,478,895; 4,112,179; 4,297,265; 2,893,962; 4,504,549; 3,360,394; 4,293,611; 4,472,470; and 4,666,765. These surface coatings impart various characteristics to the surface of a web, but do not substantially impregnate the web fibers. Such coatings remain on the surface and do not provide a film over the individual internal fibers and/or yarn bundles of the web. In addition, such coatings on the web surface tend to wash away quickly.
Prior art treatments of webs by saturation or impregnation also suffer from limitations. Saturation, such as accomplished by padbath immersion, or the like, is capable of producing variable concentrations of a given saturant chemical.
To treat a flexible web, by heavy saturation or impregnation with a polymer material, such as a silicone resin, the prior art has suggested immersion of the flexible web, or fabric, in a padbath, or the like, using a low viscosity liquid silicone resin so that the low viscosity liquid can flow readily into, and be adsorbed or absorbed therewithin. The silicone resin treated product is typically a rubberized web, or fabric, that is very heavily impregnated with silicone. Such a treated web is substantially devoid of its original tactile and visual properties, and instead has the characteristic rubbery properties of a cured silicone polymer.
International Patent Application W00106054 A1 for nanoparticle-based permanent treatment for textiles by Soane et al, published Jan. 25, 2001 provides the following information, “an agent or other payload entrapped, that is, surrounded by or contained within a synthetic, polymer shell or matrix that is reactive to fibers, yarns, fabrics, or webs, to give textile-reactive beads or matrices. The beads or matrices a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fibers and fabrics with insulating, water-proofing, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fibers and fabrics with insulating, water-proofing, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fibers and fabrics with insulating, water-proofing, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3192174

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.