Illumination – Light fiber – rod – or pipe
Reexamination Certificate
2000-09-21
2002-09-17
O'Shea, Sandra (Department: 2875)
Illumination
Light fiber, rod, or pipe
C362S554000, C362S562000, C362S581000, C362S582000, C362S511000, C362S556000
Reexamination Certificate
active
06450677
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to portable, modular lighting systems, and more specifically to a lighting system using fiberoptic transmission lines from a remotely located light source. The present lighting system is very versatile, but is particularly well adapted for use in emergency situations where an explosive, combustion, electrical, or other hazard may exist if an electrical lighting system is used.
2. Description of the Related Art
Numerous portable lighting systems for use in emergency or other situations, have been developed in the past. Most all such systems rely upon electrical power and transmission to a plurality of electric lights, be they incandescent, fluorescent, arc lamps, or other type of electric light. Such lighting systems work well, where there is no hazard of fire, explosion, electrical shock, and/or other hazard due to their deployment. However, emergency situations involving fuel and other chemical spills, etc., occur with increasing frequency in the modern world, and such electric lighting systems are not always compatible with the hazards involved with such spills.
This is particularly true of highway traffic, where large trucks play an ever increasing role in the carriage of a wide variety of goods and materials. Gasoline trucks, trucks carrying explosives and fireworks, and other trucks carrying potentially hazardous cargo, have the potential to create a widespread disaster in the event of an accident. Accordingly, practically every area of the country has emergency personnel who are trained to cope with such an occurrence, and to take steps to minimize the environmental and other damage which may occur due to an accident involving such cargo.
Perhaps the worst possible scenario for such an accident would be at night, where lighting is poor at best in comparison to daylight conditions. Again, most emergency response units are well equipped to handle such situations, and have various types of emergency lighting available. However, such emergency lighting is invariably of the electric type, and while such electric emergency lighting is generally required to meet very stringent safety checks, there is still some chance that the breakage of such an electric light may provide an ignition source for any explosive or fuel spill in the area, resulting in a major disaster. Emergency crews are well aware of this possibility, and there are regulations requiring frequent checks and inspections for “explosive proof” lighting systems which may be used in such hazardous environments. Nonetheless, any lighting system utilizing electrical energy at each light outlet, still carries with it the potential for disaster when combined with a major fuel spill or similar hazard.
Accordingly, a need will be seen for a lighting system which completely eliminates all electrical and heat energy at each of the light outlets of the system, with the only energy output being light Additional safety may be provided by means of ultraviolet light filtration at the light source(s), thereby assuring that no chemical reaction may be triggered by such ultraviolet light where ultraviolet light sensitive chemicals are present. While the present fiberoptic light system is particularly well suited for use in chemical, fuel, and explosive spills and other similar hazardous environments, it will be seen that it may also be used in virtually any environment where portable, supplemental lighting is desired.
A discussion of the related art of which the present inventor is aware, and its differences and distinctions from the present invention, is provided below.
U.S. Pat. No. 4,613,931 issued on Sep. 23, 1986 to Elmar K. Messinger, titled “Portable Fiberoptic Light Source For Use In Hazardous Locations” describes a light source having an explosion proof connector, flame paths and cooling fins, and various shielding means therewith. The Messinger light source would appear to meet the safety standards for such devices which place the electrical and heat energy of the light source within the hazardous area. In contrast, the present lighting system keeps the light source well away from the hazardous area, transmitting only light to the hazardous area by one or more fiberoptic cables. Also, Messinger does not disclose multiple fiberoptic cable outputs nor any light fixture specifics, as provided by the present invention.
U.S. Pat. No. 4,933,816 issued on Jun. 12, 1990 to William F. Hug et al., titled “Inspection/Detection System With A Light Module For Use In Forensic Applications,” describes a relatively small, portable unit having only a single fiberoptic cable output. The device is relatively low powered, being intended only for forensic use where a relatively small but specialized light output is desired. Hug et al. provide a series of optical filters at the light box, but the device is primarily directed to ultraviolet output in order to cause various substances (fingerprint powder, etc.) to become fluorescent or luminescent when illuminated by the Hug et al. light. Moreover; Hug et al. provide laser illumination, which is not at all suitable for providing continuous lighting over a widespread area for an extended period of time, as provided by the present light system.
U.S. Pat. No. 4,975,810 issued on Dec. 4, 1990 to Frans G. Vanderbel, titled “Light Source,” describes a relatively small, portable fiberoptic device having only a single light output line. This is due to the Vanderbel device being intended for use in the medical field, where the single light device is used by a medical practitioner for localized illumination of a single area under examination. This teaches away from the present invention, with its multiple light output fixtures for illuminating a relatively large area. Moreover, the Vanderbel device (as well as the Hug et al. device described above) emits its light axially, rather than radially from the light output fixture as provided by the present invention.
U.S. Pat. No. 5,111,367 issued on May 5, 1992 to David L. Churchill, titled “Fiber Optic Lighting Device,” describes a light source having a plurality of fiberoptic light outlets therein. Churchill also discloses provision for ultraviolet and infrared filtration of light emitted from his light source, by coating the polished output lens ends of the device. The present fiberoptic lighting system may also provide infrared and ultraviolet filtration, if so desired; these features are well known and conventional. However, Churchill fails to disclose any details of the light fixtures disposed at the distal ends of the fiberoptic cables used with his device, whereas such light fixtures in their various embodiments are a part of the present invention.
U.S. Pat. No. 5,345,531 issued on Sep. 6, 1994 to John S. Keplinger et al., titled “Optical Fiber Lighting Apparatus And Method” describes a decorative fiberoptic lighting system wherein a fiberoptic cable formed of a plurality of strands, is masked selectively to provide light output at various spaced apart locations along the cable. The light source emits varying colors of light, which when passed along the fiberoptic cable to be viewed through the masked exterior of the cable, appear to be a series of slowly moving light “packets” traveling along the cable. The Keplinger et al. device is directed to a relatively low light output device for decorative purposes and cannot provide high intensity lighting for illuminating a large area. Moreover, Keplinger et al. do not disclose any form of light fixture at the distal end of their cable, as provided by the present invention.
U.S. Pat. No. 5,602,948 issued on Feb. 11, 1997 to Joseph E. Currie, titled “Fiber Optic Illumination Device,” describes a device intended for personal emergency lighting use. Currie provides a light source (either self contained, or by means of an existing automotive light or the like) with a fiberoptic cable which may be extended to illuminate an area for roadside automotive repairs or the like. The Currie device requires only a single fiberoptic
Knauer Robert M.
Reagan Kevin R.
Litman Richard C.
O'Shea Sandra
Ton Anabel
LandOfFree
Fiberoptic lighting system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fiberoptic lighting system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fiberoptic lighting system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2831047