Fiber waveguides and methods of making the same

Optical waveguides – Optical fiber waveguide with cladding

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S124000, C385S126000, C385S146000

Reexamination Certificate

active

10733873

ABSTRACT:
In general, in one aspect, the invention features an article including a high-power, low-loss fiber waveguide that includes alternating layers of different dielectric materials surrounding a core extending along a waveguide axis, the different dielectric materials including a polymer and a glass.

REFERENCES:
patent: 3659915 (1972-05-01), Maurer et al.
patent: 4076380 (1978-02-01), DiMarcello et al.
patent: 4099835 (1978-07-01), French et al.
patent: 4478486 (1984-10-01), Fentress et al.
patent: 4688893 (1987-08-01), Laakmann
patent: 4930863 (1990-06-01), Croitoriu et al.
patent: 5497440 (1996-03-01), Croitoriu et al.
patent: 5533161 (1996-07-01), Atkeisson et al.
patent: 5729646 (1998-03-01), Miyagi et al.
patent: 5815627 (1998-09-01), Harrington
patent: 5935491 (1999-08-01), Tripathy et al.
patent: 6130780 (2000-10-01), Joannopoulos et al.
patent: 6172810 (2001-01-01), Fleming et al.
patent: 6404966 (2002-06-01), Kawanishi et al.
patent: 6463200 (2002-10-01), Fink et al.
patent: 6563981 (2003-05-01), Weisberg et al.
patent: 6603911 (2003-08-01), Fink et al.
patent: 6606440 (2003-08-01), Hasegawa et al.
patent: 6625364 (2003-09-01), Johnson et al.
patent: 6728439 (2004-04-01), Weisberg et al.
patent: 6735369 (2004-05-01), Komachi et al.
patent: 6788864 (2004-09-01), Ahmad et al.
patent: 6801698 (2004-10-01), King et al.
patent: 6816243 (2004-11-01), Shurgalin et al.
patent: 6879386 (2005-04-01), Shurgalin et al.
patent: 6895154 (2005-05-01), Johnson et al.
patent: 6898359 (2005-05-01), Soljacic et al.
patent: 6903873 (2005-06-01), Joannopoulos et al.
patent: 6985661 (2006-01-01), Russell et al.
patent: 2002/0150364 (2002-10-01), Bassett et al.
patent: 2002/0164137 (2002-11-01), Johnson et al.
patent: 2003/0031852 (2003-02-01), Fink et al.
patent: 2003/0044158 (2003-03-01), King et al.
patent: 2003/0044159 (2003-03-01), Anderson et al.
patent: 2004/0013379 (2004-01-01), Johnson et al.
patent: 2004/0137168 (2004-07-01), Fuflyigin
patent: 2004/0141702 (2004-07-01), Fuflyigin et al.
patent: 2004/0223715 (2004-11-01), Benoit et al.
patent: 2005/0226579 (2005-10-01), Fink et al.
patent: 2005/0259933 (2005-11-01), Temelkuran et al.
patent: 2005/0259934 (2005-11-01), Temelkuran et al.
patent: 2005/0259942 (2005-11-01), Temelkuran et al.
patent: 2005/0259944 (2005-11-01), Anderson et al.
patent: 2005/0271340 (2005-12-01), Weisberg et al.
patent: 3942556 (1991-06-01), None
patent: 0 844 501 (1998-05-01), None
patent: 1198904 (1968-05-01), None
patent: WO99/47465 (1999-09-01), None
patent: WO 00/22466 (2000-04-01), None
patent: WO 00/43815 (2000-07-01), None
patent: WO 00/46287 (2000-08-01), None
patent: WO 02/41050 (2002-05-01), None
patent: WO 02/061467 (2002-08-01), None
patent: WO 02/072489 (2002-09-01), None
patent: WO 03/079073 (2003-09-01), None
patent: WO 03/079077 (2003-09-01), None
Allan et al. “Photonic crystal fibers: effective-index and band-gap guidance.” Photonic Crystals and Light Localization in the 21stCentury. 2001: Kluwer.
Barkou et al. “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect.” Optics Letters, 24:1, Jan. 1, 1999, pp. 46-48.
Baumeister, P. “the transmission and degree of polarization of quarter-wave stacks at non-normal incidence.” Opt. Acta, 8, 1961, pp. 105-119.
Birks et al. “Full 2-D photonic bandgaps in silica/air structures.” Electronic Letters, 31:22, Oct. 26, 1995, pp. 1941-1943.
Bormashenko et al. “Development of new-near-infrared filters based on the ‘sandwich’polymer- chalcogenide glass-polymer composites.” Optical Engineering, 40:5, 2001, pp. 661-662.
Bormashenko et al. “New Oriented Polymer/Thermoplastic Glass Composites for IR Optics.” Engineering Materials, 10, 2000, pp. ?-?.
Bormashenko et al. “Optical Properties and infrared optics applications of composite films based on polyethylene and low-melting-point chalcogendie.” Society of Photo-Optical Instrumentation Engineers, Feb. 2002.
Bornstein et al. “Chalcogenide Hollow Fibers.” Journal of Non-Crystalline Solids, 77:8, 1985, pp. 1277-1280.
Broeng et al. “Analysis of air-guiding photonic bandgap fibers.” Optics Letters, 25:2, 2000, pp. 96-98.
Cregan et al. “Single-Mode Photonic Band Gap Guidance of Light in Air.” Science. 285, Sep. 3, 1999, pp. 1537-1539.
Dai et al. “High-peak-power, pulsed CO2laser light delivery by hollow glass waveguides.” Appl Optics, 36, 1997, pp. 5072-5077.
De Sterke et al. “Differential losses in Bragg fibers.” J. Appl. Phys., 76:2, Jul. 15, 1994, pp. 680-688.
Eggleton et al. Microstructured optical fiber devices. Optics Express, 9:13, 2001, pp. 698-713.
Feigel A. et al. “Chalcogenide glass-based three-dimensional photonic crystals.” Applied Physics Letters, 77:20, pp. 3221-3223, Nov. 13, 2000.
Fink et al. “A dielectric omnidirectional reflector.” Science, 282:5394, 1998, pp. 1679-1682.
Fink et al. “Guiding Optical Light in Air Using an All-Dielectric Structure.” Journal of Lightwave Technology, 17:11, Nov. 11, 1999, pp. 2039-2041.
Fitt et al. “Modeling the fabrication of hollow fibers: Capillary drawings.” Journal of Lightwave Technology, 19:12, 2001, pp. 1924-1931.
Gopal et al. “Deposition and characterization of metal sulfide dielctric coatings for hollow glass waveguide.” Optical Society of America. 2003. Optics Express, 11:24, Dec. 1, 2003.
Harrington, J.A. “Infrared Fibers in Handbook of Optics.” McGraw-Hill, 2001, pp. 14, 1-14, 13.
Harrington, James. “A Review of IR Transmitting, Hollow Waveguides.” Fiber and Integrated Optics, 19, 2000, pp. 211-217.
Hart et al. “External Reflection from Omnidirectional Dielectric Mirror Fibers.” Science, 296, Apr. 19, 2002, pp. 510-513.
Hilton, A.R., “Optical Properties of Chalcogenide Glasses.” Journal of Non-Crystalline Solids, 2, 1970, pp. 28-39.
Hongo et al. “Transmission of Kilowatt-Class Co2-Laser Light through Dielectric-Coated Metallic Hollow Wave-Guides for Material Processing.” Applied Optics, 31:24, 1992. pp. 5114-5120.
Ibanescu et al. “An all-dielectric coaxial wavegide.” Science, 289:5478, 2000, pp. 415-419.
Ibanescu et al. “Analysis of Mode Structure in OmniGuide Fibers.” Physical Review E, 67:4, 2003.
John, S. “Strong Localization of Photons in Certain Disorderd Dielectric Superlattices.” Physical Review Letters, 58:23, 1987, pp. 2486-2486.
Johnson et al. “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers.” Optics Express, 9:13, 2001, pp. 748-779.
Keck et al. “On the ultimate lower limit of attenuation in glass optical waveguides.” Applied Physics Letters, 22:7, 1973, pp. 307-309.
King et al“Laboratory preparation of highly pure As2Se3glass.” J. Non-Cryst. Sol., 181, 1995, pp. 231-237.
Knight et al. “Photonic Band Gap Guidance in Optical Fibers.” Science, 282, Nov. 20, 1998, pp. 1476-1478.
Kucuk et al. “An estimation of the surface tension for silicate glass melts at 1400° C. using statistical analysis.” Glass Technol., 40, 1999, pp. 149-153.
Mahlein. Generalized Brewster-angle conditions for quarter-wave multilayers at non-normal incidence. J. Opt. Soc. Am., 64, 1974, pp. 647-352.
Marcatilli et al. “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers.” Bell Syst. Tech. J., 43, 1964, pp. 1783-1809.
Mossadegh R. et al. “Fabrication of single-mode chalcogenide optial fiber.” Journal of Lightwave Technology, 16:2, pp. 214-216, Feb. 1998.
Matsuura et al. “Hollow infrared fibers fabricated by glass-drawing technique.” Optics Express, 10:12, 2002. pp. 488-492.
Matsuura et al. “Small-bore hollow waveguide for delivery of near singlemode IR laster radiation.” Electronic Letters, 30, 1994, pp. 1688-1690.
Maurer et al. &

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fiber waveguides and methods of making the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fiber waveguides and methods of making the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fiber waveguides and methods of making the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3776201

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.