Fiber to optical device alignment

Optical waveguides – With disengagable mechanical connector – Optical fiber to a nonfiber optical device connector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S039000, C385S049000, C385S088000, C385S091000, C385S052000, C385S134000, C385S136000, C385S137000

Reexamination Certificate

active

06616346

ABSTRACT:

TECHNICAL FIELD
This invention relates to aligning a fiber to an optical device.
BACKGROUND
Fiber optic systems often require aligning an optical fiber (“a fiber”) to couple light to an optical device, such as a laser diode or an electro-optical detector. Fibers and optical devices have very small emitting and receiving areas, sometimes as small as a few microns in diameter. Therefore, achieving an efficient coupling between a fiber and an optical device requires an alignment with sub-micron accuracy. Typically, the alignment is performed manually, by an operator, who adjusts the position of the fiber while observing the fiber with an observation station (i.e., a high-resolution camera or microscope) or while monitoring a measured output signal from the optical device. Manual alignment is very time consuming and the resulting alignment is dependent on the accuracy and skill of the individual operator.
SUMMARY
According to an aspect of this invention, an apparatus for aligning a fiber to an optical device includes a base, a fiber holder mounted on the base, the fiber holder holding the fiber during operation of the apparatus, a first movable stage mounted on the base, the first movable stage holding the optical device during operation of the apparatus, a second movable stage mounted on the base, wherein the second movable stage is configured to move parallel to the first movable stage, a fiber positioner attached to the second movable stage, and a processor programmed to control the movement of the first movable stage and the second movable stage, wherein, during operation of the apparatus, the processor moves the first movable stage and the second movable stage towards the fiber.
One or more of the following features may also be included: during operation of the apparatus, the processor moves the first movable stage and the second movable stage towards the fiber until the end of the fiber is proximate to the optical device, the fiber positioner may include a movable arm having a range of motion orthogonal to the longitudinal axis of the fiber held in the fiber holder, wherein the processor is programmed to control the movement of the movable arm, and wherein, during operation of the apparatus, the processor moves the movable arm and positions an end of the fiber proximate to the optical device, the apparatus may include a signal generation circuit transmitting a test signal to one of the optical device and the fiber, and a signal detection circuit receiving a detected test signal from one of the optical device and the fiber, wherein the processor is programmed to determine the optimum position of the fiber to maximize a strength of the detected signal, the apparatus may include a support member attached to the base, and a camera mounted to the support member, the camera having a focal plane proximate to the end of the fiber, and, wherein the processor is programmed to determine the coordinates of the end of the fiber that is being aligned to the optical device, and, wherein the movable arm further includes a fiber-guide holding device attached to an end of the movable arm, wherein, during operation of the apparatus, the fiber-guide holding device holds the fiber-guide using forces associated with a flow of air, and, wherein the movable arm further includes a fiber-guide holding device attached to an end of the movable arm, wherein the fiber-guide holding device is a clamping device, and, wherein the optical device is mounted within a device box, and wherein the device box has an opening in a side of the device box that is in substantial alignment with the optical device, and apparatus may further include a third movable stage mounted to the support member and holding an adhesive applicator, wherein, during operation of the apparatus, the adhesive applicator holds an adhesive, and wherein the processor is programmed to control the movement of the third movable stage and programmed to control the dispensing of the adhesive proximate to at least one of the fiber, the fiber-guide and the device box, and apparatus may further include an adhesive applicator attached to the second movable stage, wherein, during operation of the apparatus, the adhesive applicator holds an adhesive, and, wherein the processor is programmed to control the dispensing of the adhesive proximate to at least one of the fiber, the fiber-guide and the opening in the side of the device box, and the apparatus may further include a third movable stage mounted to the support member and holding an adhesive applicator, wherein, during operation of the apparatus, the adhesive applicator holds an adhesive, and wherein the processor is programmed to control the movement of the third movable stage and programmed to control the dispensing of the adhesive proximate to at least one of the fiber and the fiber-guide, and, wherein the fiber holder includes a fiber rotator for rotating the fiber about its longitudinal axis, and wherein the processor is programmed to rotate the fiber until the detected test signal is maximized.
According to a further aspect of this invention, an apparatus for aligning a fiber to an optical device includes a base, a fiber holder mounted on the base, the fiber holder holding the fiber during operation of the apparatus, a first movable stage mounted on the base, the first movable stage holding the optical device during operation of the apparatus, a support member attached to the base, a camera mounted to the support member, the camera having a focal plane proximate to an end of the fiber that is being aligned to the optical device, and a processor programmed to control the movement of the first movable stage, wherein, during operation of the apparatus, the first movable stage is moved towards the fiber.
One or more of the following features may also be included: wherein the processor is programmed to determine the coordinates of the end of the fiber that is being aligned to the optical device, and, wherein the optical device is mounted within a device box, and wherein the device box has a feed-through opening in a side of the device box that is in substantial alignment with the optical device, and the apparatus may further include a signal generation circuit transmitting a test signal to one of the optical device and the fiber, and a signal detection circuit receiving a detected test signal from one of the optical device and the fiber, wherein the processor is programmed to determine the optimum separation distance between the fiber and the optical device to maximize a strength of the detected signal, and, wherein the fiber holder includes a fiber rotator for rotating the fiber about its longitudinal axis, and wherein the processor is programmed to rotate the fiber until the detected test signal is maximized.
According to a further aspect of this invention a method of aligning a fiber to an optical device includes holding a fiber in a fixed position, holding an optical device on a first movable stage, holding a fiber-guide on a second movable stage, and moving the optical device and the go fiber-guide towards the fiber, wherein the moving the optical device and the fiber-guide towards the fiber comprises controlling the moving with a processor.
One or more of the following features may also be included: wherein the holding a fiber-guide further includes holding the fiber-guide with a movable arm having a range of motion orthogonal to the longitudinal axis of the fiber, and moving the fiber-guide proximate to the optical device under control of the processor, the method may further include transmitting a test signal to one of the fiber and the optical device, receiving a signal from one of the fiber and the optical device, and determining the optimum position of the fiber with the processor, the determining based on a signal strength of the received signal, and, wherein holding a fiber in a fixed position further includes holding an end of the fiber in a focal plane of a camera, the method may further include determining coordinates of the end of the fiber with the processor, the determining the c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fiber to optical device alignment does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fiber to optical device alignment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fiber to optical device alignment will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3090421

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.