Fiber surface fastener and method for finishing same

Buckles – buttons – clasps – etc. – Including readily dissociable fastener having numerous,... – Having filaments constructed from coated – laminated – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C024S306000, C024S443000, C024S445000, C024S448000, C156S066000

Reexamination Certificate

active

06681457

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a finishing method for a fiber surface fastener in which a plurality of engaging elements are formed on a surface of a foundation cloth composed of woven fabric or nonwoven fabric and a fiber surface fastener obtained by the same finishing method.
2. Description of the Prior Art
In a surface fastener which is formed by knitting or weaving monofilament and/or multi-filament in a loop shape at the same time when the foundation cloth is knitted or woven, and in which a plurality of hook-like or loop-like engaging elements are formed on the foundation cloth face, if engagement/disengagement of said surface fastener is repeated without any special finish processing, the loop-like engaging elements are loosened inside a knitting/weaving structure of the foundation cloth so that the hook-like engaging elements come to slip out easily, thereby the engaging/disengaging function as a surface fastener being lost. In order to prevent such loss of the engaging/disengaging function, a surface opposite to a surface on which engaging elements of the foundation cloth are formed is coated with thermoplastic resin, so as to fix the knitting/weaving structure of the foundation cloth while the base portions of the engaging elements are fixed to the foundation cloth, the procedure generally being called back-coating.
Upon this back-coating, as disclosed in, for example, Japanese Utility Model Application Publication No. 3-8388, the foundation cloth of an elongated surface fastener is carried on a predetermined passage with its rear surface directed upward and, at a resin coating portion, a liquid-state coating material is poured from a coater having a doctor plate and a coating material is applied to the foundation cloth with an uniform thickness. Or, as disclosed in Japanese Utility Model Application Publication No. 4-14149, a surface fastener is carried with a coating face of a surface fastener in contact with a surface of a rotary roll whose bottom portion is dipped in a coating bath, so that that foundation cloth is coated with coating material.
On the other hand, the surface fasteners of this kind do not necessarily have engaging elements on only one surface of the foundation cloth. There are surface fasteners having engaging elements formed on both front and rear surfaces of the foundation cloth. Generally, when the engaging elements are formed on both of the front and rear surfaces of the foundation cloth, the hook-like male engaging elements are formed on one face while the loop-like female engaging elements are formed on the other face. Applying coating materials to such double-face surface fasteners is impossible by the coating methods disclosed in the above publications.
Accordingly, as disclosed in, for example, Japanese Patent Application Laid-Open No. 4-49904, resin whose 100% modulus is 60 kg/cm
2
or less is applied to an engaging element formation surface of the surface fastener in the form of solution or emulsion having the viscosity of 50 to 2000 centi poise with an air spray method and is dried in order to fix the surface fastener having the engaging elements to both of the front and rear surfaces of the foundation cloth. According to this coating method, fixing of knitting/weaving structure of the foundation cloth and fixing of the engaging elements to the foundation cloth can be achieved without losing softness of the surface fastener and penetration of a needle upon sewing operation is never inhibited.
Although coating by pouring down coating agent or coating through a roller as proposed by the above-described Japanese Utility Model Application Publication No. 3-8388 and Japanese Utility Model Application Publication No. 4-14149 are valid for a surface fastener in which the engaging elements are formed on only a single surface of the foundation cloth, not only the coating to the double-face surface fastener as described above is impossible, but also the application amount of the coating agent is inevitably increased and resin film is formed on its coating surface, so that resistance on a needle pierced upon sewing tends to increase.
On the other hand, although coating can be applied to the double-face surface by the coating method proposed in the above-described Japanese Patent Application Laid-Open No. 4-49904, part of the coating agent inevitably adheres to the engaging elements themselves and solidifies thereby inhibiting smooth engagement/disengagement function. Particularly, multi-filament is used for the loop-like female engaging elements and such female engaging elements require to be so constructed that respective filaments are sufficiently separated while front ends thereof are widened so as to be kept apart from each other in order to achieve engagement with and disengagement from the mating hook-like male engaging elements accurately. If coating is applied to the female engaging elements having such a structure with the airless spray method, not only coating agent adheres between the multi-filaments so that they are bonded and solidified, but also thin films may be formed on loops and further, it is difficult to feed the coating agent effectively up to the foundation cloth located at the base portions of the engaging elements.
The present invention has been achieved to solve the above-described conventional problems. More specifically, an object of the present invention is to provide a finishing method for obtaining a fiber surface fastener through a simple process, which is capable of, irrespective of the configuration of the engaging elements or the front/rear surfaces of the foundation cloth, accurately fixing the entangling portion between the foundation cloth composed of knitted/woven fabric or nonwoven fabric and the base portion of the engaging elements, and the entangling portion between yarns in the foundation cloth, that is, the entangling portion between fibers in the knitting/weaving structure of knitted/woven fabric or in base material of nonwoven fabric, and the entangling portion between a fiber in the base material and a loop fiber. Further, the finishing method is capable of inhibiting the coating agent from adhering to or solidifying on the surface of a protruded portion of the engaging element, reducing the entire amount of the coating agent used and obtaining a fiber surface fastener excellent in softness, thereby producing no obstacle in sewing processing and allowing the engaging elements to engage/disengage smoothly. Further, another object of the present invention is to provide a fiber surface fastener which is obtained according to the same finishing method.
SUMMARY OF THE INVENTION
This invention regards to a finishing method for fixing a fiber surface fastener including a plurality of engaging elements on a foundation cloth composed of knitted/woven cloth or nonwoven cloth using synthetic resin. The finishing method is characterized by comprising: carrying the surface fastener continuously; applying powdery hot-melt adhesive to the engaging-element-formation face of the carried surface fastener from a separate position; heating the surface fastener to which the powdery hot-melt adhesive is applied at a temperature not lower than the melting temperature of the adhesive for a required time so as to melt the applied adhesive; and cooling the surface fastener after the heating time elapses.
The hot-melt adhesive mentioned here is solid under normal temperatures and 100% of its component is solid compound mainly made of thermoplastic resin. Usually, the adhesive is melted inside an applicator by heating, and applied to and pressed against an object. Adhesion is completed several seconds after pressing. Examples of the thermoplastic resin, a main component of this hot-melt adhesive, are ethylene vinyl acetate copolymer, polyethylene, a tactic polypropylene, ethylene acrylate copolymer, saturated copolymerized nylon, saturated copolymerized polyester.
Usually, this kind of hot-melt adhesive is provided with tackifier which is soluble with thermoplastic resin,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fiber surface fastener and method for finishing same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fiber surface fastener and method for finishing same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fiber surface fastener and method for finishing same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3252772

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.