Fiber-reinforced composite structure

Land vehicles: bodies and tops – Tops – Load cover

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C296S100010, C296S100020, C428S071000

Reexamination Certificate

active

06331028

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to composite fiber-reinforced polymeric structures, and more particularly, to composite fiber-reinforced polymeric structures having at least two polymeric sheets in opposed spaced relationship such that a cavity is formed therebetween, at least one fibrous reinforcing layer bonded to the inner surface of at least one of the polymeric sheets, and a polymeric core material introduced under vacuum into the cavity between the polymeric sheets. The polymeric core material exhibits a resinous character in the region of the fibrous reinforcing layer to impregnate the fibrous layer and adhere the fibrous layer to the adjacent polymeric sheet, and exhibits a foamed character defined by a multiplicity of foam cells in the region on the opposite side of the fibrous layer relative to the polymeric sheet. The present invention is particularly suitable for forming relatively large composite structures, such as structural components for automobiles, trucks, recreational vehicles, and boats.
BACKGROUND INFORMATION
Composite structures comprising polymeric outer layers and fiber-reinforced foam cores are known in the prior art. For example, U.S. Pat. No. 4,910,067 assigned to the Assignee of the present invention (“the '067 patent”), discloses a structural composite comprising polymeric outer layers, a layer of fibrous material, and a foam core. It also has been known in the prior art to manufacture this type of composite structure with two polymeric layers, two fibrous layers wherein each fibrous layer is adhesively attached to an inner wall of a respective polymeric layer, and the foam core disposed within the space between the fibrous layers. The polymeric material of the foam core exhibited both a resinous and a foaming character, such that the resinous core material penetrated the fibrous layers, and the foamed core material filled the space between the fibrous layers.
The '067 patent further discloses a method of manufacturing a structural composite comprising the steps of: forming a polymeric layer into a desired shape; treating the surface of the polymeric layer by etching and oxidation; transferring the polymeric layer to a molding surface of a mold; adhesively attaching a layer of fibrous reinforcement to an opposing molding surface of a mold; mating the molding surfaces within the mold to form a cavity therebetween; injecting a foamable polymer into the cavity; permitting the foam to expand and thereby form a fiber-reinforced polymeric composite structure; and curing the structure in the mold. Alternatively, in order to promote the penetration of the fibrous reinforcement by the foam in a resinous state, the '067 patent further discloses that the layer of fiber can be treated with a defoaming agent capable of converting the foamable polymer to a liquid.
One drawback associated with these prior art structural composites, and methods of manufacturing such structural composites, is that the relatively viscous core materials cannot rapidly fill the cavity formed between the outer polymeric layers, and moreover, cannot rapidly and fully penetrate or impregnate the fibrous layers. Accordingly, such prior art structural composites have employed only relatively lightweight, unidirectional fibrous layers, that can be more easily penetrated (or “wetted out”) by the relatively viscous core materials in comparison to heavier, multi-directional fiber reinforcement layers. As a result, such prior art composite structures tend to be relatively weaker than otherwise desired and cannot be used to form primary structural parts or components. In addition, such prior art composite structures and methods have not proven to be cost effective for manufacturing parts in substantial quantities due to the relatively high cycle times required to allow the foam to expand, fill the core, and penetrate the fibrous layers.
Several other methods are known for manufacturing structural composites in various sizes and volumes for use in a number of technical fields and industries, including the automotive, marine, agricultural and recreational machinery, construction and manufactured housing, and industrial enclosure fields and industries. For example, U.S. Pat. No. 5,588,392 to Bailey shows a resin transfer molding process for manufacturing a fiber-reinforced plastic boat hull; U.S. Pat. No. 5,853,649 to Tisack et al. shows a method for manufacturing an interior automotive foam panel using a radio frequency electric field to promote bonding of the foam to the substrate; and U.S Pat. No. 5,972,260 to Manni shows a process for vacuum forming polyurethane mixed with a pentane blowing agent to manufacture flat insulating panels.
Each process and associated composite structure described above and elsewhere in the prior art is uniquely suited for distinctively different segments of various markets based upon the size of the finished part and the volume of demand for the finished part. Some processes and associated composite structures are uniquely suited for producing large parts in low volumes, while other processes and structures are uniquely suited for producing small parts in high volumes. As production volumes increase, the complexity of the machinery involved, and the corresponding pressure applied to that machinery, necessarily increases. Accordingly, when employing these prior art processes and composite structures, the size of a part that can be formed in relatively high volumes correspondingly decreases because of the processing difficulties associated with molding relatively large parts under relatively higher pressures.
For example, it is known in the prior art to employ a fiberglass “spray-up” technology to form large parts having surface areas in the range of about 50-200 square feet. However, this technology has not proven to be economically feasible for producing high volumes of parts, such as in excess of 5,000 parts. Instead, resin transfer molding frequently has been used in the prior art to form relatively smaller parts in relatively higher volumes. For example, resin transfer molding typically has been used to manufacture parts having surface areas in the range of about 5-50 square feet, and in volumes of about 5,000-20,000 parts. Similarly, compression molding has been used in the prior art to form relatively smaller parts in relatively higher volumes. For example, compression molding typically has been used to manufacture parts having surface areas less than about 10 square feet, and in volumes of about 25,000-50,000 parts. To form parts in volumes greater than 50,000, the prior art typically has employed injection molding processes. Such processes, however, are generally limited to producing relatively smaller parts in comparison to the above-described processes.
Accordingly, one drawback associated with these and other prior art processes and associated structural composites is the inability to manufacture relatively large parts, such as parts having surface areas greater than about 25 square feet, in relatively high volumes, in a commercially feasible manner.
Another drawback associated with these and other prior processes and associated structural composites, particularly fiber-reinforced polymeric composites with foam cores, is the difficulty in forming relatively large, thin-walled products that retain the composite's strength as well as a high-grade, cosmetic, impact and chemical resistant, weatherable exposed surface.
Accordingly, it is an object of the present invention to overcome one or more of the above described and other drawbacks and disadvantages of the prior art, and to provide a composite structure that may be employed to form relatively large parts in relatively high volumes while exhibiting reduced cycle times in the manufacture thereof and improved strength.
SUMMARY OF THE INVENTION
The present invention is directed to a composite structure, such as a tonneau or other part for a motor vehicle, comprising two molded outer polymeric layers spaced apart from each other and defining a cavity therebetween. Eac

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fiber-reinforced composite structure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fiber-reinforced composite structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fiber-reinforced composite structure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2597956

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.