Fiber optical connector seal

Seal for a joint or juncture – Seal between fixed parts or static contact against... – Contact seal for a pipe – conduit – or cable

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C277S619000, C277S621000, C277S919000, C174S07700S

Reexamination Certificate

active

06196553

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention relates to fiber optic connectors. More particularly, the invention pertains to a seal for preventing the infiltration of fluid between the exterior and the interior of a vessel through a connector in the event that connection is broken between the ship-mounted receptacle and a mating plug.
2. Description of the Prior Art U.S. Pat. Ser. No. 5,590,229 of Goldman et al. covering “Multichannel Fiber Optic Connector” and property of the assignee herein presents an example of a connector for optically coupling the on-board (e.g. laser, photodetector and processing electronics) and exterior (i.e., hydrophones) elements of a hydrophone optical sensor system. Typically, the female housing (“receptacle”) of such a connector is fixed to the turret of a so-called “hull penetrator” of the vessel. The male housing (“plug”) may be fixed to the proximate end of a hose-like casing containing a plurality of end-to-end hydrophones in the case of a towed array or to each of the ends of an optical cable for subsequent interconnection to a receptacle that is mounted to an acoustic module. In the latter case, the module is, in turn, fixed to the hull of the vessel. Multiple optical fibers are required for communication of information between vessel and sensors. For example, a seven (7) hydrophone arrangement requires fifteen (15) associated optical fibers and, thus, the maintenance of a like number of reliable optical contacts at the plug-to-receptacle interface.
In the patented connector, multiple optical fibers with ferrule terminations are spring-loaded within a plurality of aligned internal channels within each half of the connector. The faces of aligned ferrule-mounted fibers abut one another at one end while the fibers exit the opposed end of each channel.
As mentioned above, a connector of the above type might contain fifteen (or more) internal channel passageways. Each of such passageways poses a potential fluid infiltration path should the submerged connector become open or uncoupled while in use. Unintentional uncoupling of the receptacle from the plug of the connector can occur during use. The greater the depth of the turret-mounted receptacle below the surface at the time of decoupling, the higher the pressure differential between the inboard and outboard ends of the multiple connector channels for exerting a fluid infiltration force.
Recognition of the danger posed by the mounting of a connector of the above type to the turret of a hull penetrator has mandated the provision of a sealing means in the prior art. Typically, the seal has been produced by filling the inboard end or tail of the receptacle with an appropriate non-porous water-resistant compound such as a polyurethane. While a superficially-simple solution, this approach to the problem of infiltration can be risky as it is both material and process dependent. One must be aware of the shelf life of the material which will vary in accordance with the skill and accuracy with which the (generally two element) compound has been mixed. The process of filling the end of the receptacle involves the careful preparation of internal surfaces that must hold the seal against the frequently-quite-significant potential fluid infiltration forces.
Once affixed, such a seal effectively permanently fixes the configuration of the connector. Should replacement of a fiber or a ferrule be required, a complete replacement of the involved half of the connector is required. Thus, in the long run, such a prior art seal can involve significant cost beyond that suggested by the apparent simplicity of the concept.
SUMMARY OF THE INVENTION
The seal assembly of the invention is designed to fit within a housing member and comprises a retainer member wedged against the wall of the housing member, the retainer member having channels for accommodating the optical fibers therethrough. A cover plate is provided in association with the retainer member, and one or more standoff spacers properly secures and spaces the retainer member from other structures within the housing member. Preferably, the retainer member includes an annular O-ring channel in which an O-ring is seated, so as to provide an improved seal between the retainer member and the housing member.
In one aspect, the retainer member includes a back wall and a front wall, wherein the front wall includes, about the channel passing through the retainer member, an annular O-ring recess which receives an O-ring. This O-ring surrounds the optical fiber as it emerges from the retainer member, providing a seal at this critical point in the path of the optical fiber. Preferably, the cover plate includes apertures which register with the channels when the cover plate is located adjacent the retainer member, the apertures permitting passage therethrough of the optical fiber. That part of the cover plate surrounding the aperture encases the O-ring in the annular O-ring recess, helping to ensure an improved seal between the retainer member and the optical fiber.
The retainer member with its associated O-rings has the important function of blocking water passage between the housing member in which the retainer member is contained and the retainer member itself. It also provides a housing and support: for the O-rings surrounding the optical fibers as they emerge from the channel in the retainer member, an important point of sealing to prevent water flooding through the channel and into adjacent components. The retainer member further provides an anchor to which the standoff spacer is secured, and since the standoff spacer is also secured at its other end to other structures within the housing, an appropriate spacing between the retainer member and other structures within the housing is defined and maintained. The retainer receptacle may be made of stainless steel, or of an alloy, such as “K-MONEL”.
The cover plate has, as one of its most important functions, the ability to keep the O-rings located in the O-ring annular recess of the retainer member in position around the optical fibers, providing a critical point of sealing along the path followed by the optical fiber.
The standoff spacer, appropriately bolted to the cover plate and retainer member, ensures that the cover plate remains in place. The standoff spacer also creates a space, or chamber, between the cover plate of the seal assembly and the structure containing the ferrules. This space constitutes an air-gap in which the optical fibers are located, without being under any tension, and the chamber therefore operates as a fiber-strain relief area. Furthermore, the standoff spacer attaches the remaining portions of the seal assembly, namely, the retainer member and the cover plate, to the structure within the housing holding the ferrules. In a preferred embodiment, one end of the standoff spacer is screwed or bolted to the back plate, which is attached to the ferrule holder. With the seal assembly bolted to the ferrule holder assembly, the whole structure can be slideably inserted into and removed from the housing, with the proper spacing and component configuration already defined and maintained prior to insertion in the housing. The ability for the entire assembly to be removed and replaced within the body as one piece provides an important advantage in that ease of access for reworking or repairing components within the housing member is facilitated, reducing down-time for such repairs and simplifying the repair process itself.
The preceding and other features and advantages of the present invention will become further apparent from the detailed description that follows. Such description is accompanied by a set of drawing figures. Numerals of the drawing figures, corresponding to those of the written description, point to the features of the invention. Like numerals refer to like features throughout both the written description and the drawing figures.


REFERENCES:
patent: 2605315 (1952-07-01), Hargett
patent: 4553807 (1985-11-01), Cane
patent: 5301959 (1994-04-01), Gould
patent: 5718435 (1998-02-01

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fiber optical connector seal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fiber optical connector seal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fiber optical connector seal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2477881

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.