Measuring and testing – Fluid pressure gauge – Photoelectric
Reexamination Certificate
2003-06-10
2004-11-23
Lefkowitz, Edward (Department: 2855)
Measuring and testing
Fluid pressure gauge
Photoelectric
C385S012000
Reexamination Certificate
active
06820488
ABSTRACT:
FIELD OF THE INVENTION
In fiber-optic sensor systems, an optical electromagnetic wave guided by total reflection in an optical waveguide is used as an information carrier. In a sensing element, an optical effect modulates the light as a function of the measured variable to be detected, e.g., the pressure. Advantages of such sensors are small size, high resolution, high interference immunity to electromagnetic radiation, electrical isolation, and the possibility of constructing multisensor systems from them. Fiber-optic systems are consequently ideal for use in explosion hazard areas, in areas having high electromagnetic radiation and in medicine.
BACKGROUND INFORMATION
A known fiber-optic pressure sensor is known under the name of Fabry-Perot pressure sensor. It uses a miniature gap system including a pressure-sensitive diaphragm as a sensing element. The resonator gap is delimited by two semi-reflective mirrors. The outer mirror is designed as a diaphragm. From the point of view of interference optics, the gap is a low-quality Fabry-Perot resonator, which partially reflects light. The reflection spectrum is periodically modulated. The spectral positions of the interference minima and maxima or the period intervals depend on the gap width and on the diaphragm deflection. A fiber-optic pressure sensor based on this measuring principle is known, for example, from German Patent Application No. 40 18 998. The change in the interference pattern is detected and evaluated in a complicated manner using a spectral measuring instrument and associated analytical methods.
Another fiber-optic pressure sensor known from the related art includes a pressure measuring head also having a diaphragm functioning as a pressure transducer that completes a translational movement under applied pressure, the diaphragm having a highly reflective, metallized inside diaphragm surface. When pressure is applied, the diaphragm is deflected inwards into the pressure measuring head, as a result of which the angle of incidence of the light beams emerging from an optical waveguide onto the diaphragm is changed. This change of the angle of incidence results in a change of the reflection angle and consequently a reduction of the amount of light reflected back into the optical waveguide. The ratio of the light intensity emerging from the optical waveguide to the light intensity reflected into the optical waveguide and picked up by the inside diaphragm surface is a measure of the pressure acting on the diaphragm. In this measuring principle, which is simplified compared to the one cited first, the pressure determination requires only that the light intensity reflected back into the optical waveguide be measured. A fiber-optic pressure sensor of this type is known, for example from U.S. Pat. No. 6,131,465, it being integrated into a spark plug. However, this design of a fiber-optic pressure sensor has the disadvantage that a large sensor diaphragm displacement is required to detect the pressure based on the changes in intensity.
SUMMARY OF THE INVENTION
The fiber-optic pressure sensor of the present invention avoids the disadvantages evident in the related art and makes it possible to measure pressure with only a slight diaphragm deflection being required. Among other things, this results in a lower sensitivity of the sensor to contamination of the diaphragm. In addition, compared to the above-described Fabry-Perot pressure sensor in particular, it has considerable advantages with regard to costs and complexity of assembly and production.
According to the present invention, these advantages are attained by a fiber-optic pressure sensor having a pressure measuring head including a housing in which a diaphragm is mounted functioning as a pressure transducer that completes a translational movement under applied pressure and having at least one optical waveguide, the end face of which is directed to the inside diaphragm surface and via which the light emitted by a light source is introduced into the pressure measuring head, the inside diaphragm surface having a pattern of highly reflective areas and areas of low reflectivity.
The fiber-optic pressure sensor according to the present invention is based on the principle of light intensity measurement. The light emitted by a light source is introduced into the pressure measuring head via an optical waveguide, reflected by the inside diaphragm surface and a portion of the reflected light is picked up by the same or another optical waveguide and introduced into a detector. The detector measures the intensity of the light reaching it. The intensity picked up by the detector changes as a function of the deflection of the diaphragm. Depending on the configuration of the components of the pressure measuring head, the intensity change is a reduction or an increase in the intensity relative to the measured intensity without applied pressure. The pressure is determined using an intensity-pressure characteristic, which indicates the relation between the intensity measured by the detector and the ratio of the measured intensity to the intensity beamed by the light source and the pressure present at the pressure measuring head.
Due to the patterned inside diaphragm surface, even a small deflection of the sensor diaphragm results in a measurable intensity reduction of the light reflected back into the optical waveguide. In the pressure sensor of the present invention, a curvature of the diaphragm causes a change in the incidence—and therefore in the angle of reflection for the light reflected onto the highly reflective areas and in addition an enlargement of the areas of low reflectivity. The result of these two effects is a large intensity reduction of the light reflected in the direction of the optical waveguide even when there is only a slight curvature of the diaphragm.
The areas of low reflectivity may be, for example, cuts or indentations in the inside diaphragm surface. In order to produce such inside surfaces of the diaphragms having cuts or indentations, a laser may be used to burn in the cuts or indentations in a diaphragm having a polished or coated highly reflective surface.
Moreover, the areas of low reflectivity may be delustered areas on the inside diaphragm surface. In order to produce such inside surfaces of the diaphragm having delustered areas, the polished or coated highly reflective surface of the diaphragm may be delustered chemically or mechanically in the desired areas.
The highly reflective areas have a reflectivity
3
0.5, preferably
3
0.8. The areas of low reflectivity have a reflectivity below 0.5, preferably below 0.3.
A further object of the present invention is a spark plug for a spark-ignition internal combustion engine having a built-in pressure sensor according to the present invention, the pressure measuring head being positioned at the one end of the spark plug in such a way that the diaphragm is directly exposed to the pressure in a cylinder of the internal combustion engine. The continuous monitoring of the pressure in internal combustion engines makes a significant improvement in engine efficiency, performance and reliability possible. In addition, it is possible to reduce the operating costs and the undesirable emissions of the internal combustion engine.
The spark plug according to the present invention having the fiber-optic pressure sensor permits the monitoring of each cylinder of the internal combustion engine for knock or misfiring, making it possible to recognize and eliminate these malfunctions. Among other things, the exclusive use of high-temperature resistant materials in the pressure measuring head makes it possible to use the fiber-optic pressure sensor according to the present invention in the spark plug. In addition, even small deflections of the diaphragm of the fiber-optic pressure sensor according to the present invention are sufficient to obtain a measurable and meaningful signal. For that reason, it is possible to manufacture the pressure sensor according to the present invention and its diaphragm in particular to have the s
Konzelmann Uwe
Lenzing Thomas
Allen Andre
Kenyon & Kenyon
Lefkowitz Edward
Robert & Bosch GmbH
LandOfFree
Fiber-optic pressure sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fiber-optic pressure sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fiber-optic pressure sensor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3307960