Fiber optic connector containing a curable adhesive composition

Optical waveguides – With disengagable mechanical connector – Optical fiber/optical fiber cable termination structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S077000, C385S078000, C385S080000, C385S139000, C385S051000, C385S060000, C427S163200, C427S386000, C427S387000, C428S391000, C428S392000, C428S113000, C428S294100, C428S297400, C428S300100, C428S300700, C428S301400, C428S343000, C428S3550EP, C428S364000, C428S375000, C428S394000, C428S405000, C428S407000, C428S413000, C428S414000, C428S417000

Reexamination Certificate

active

06196730

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to an optical fiber connector, a curable adhesive which is placed into the connector to bond the silicone coated optical fiber to the connector, in order to provide an improved connection between two optical fibers, or an optical fiber and an optoelectronic component.
2. Description of the Related Art
Optical fibers have replaced copper wire as the preferred medium for carrying telecommunications signals. As with copper wire, it is necessary to provide for the interconnection of optical fibers during installation, repair or replacement of the fibers, and to terminate the fibers onto active optical devices. There are generally two kinds of interconnection devices, splices and connectors. The term “splice” usually refers to a device which provides a permanent connection between a pair of optical fibers. The term “connector,” in contrast, usually refers to a device which may be engaged and disengaged repeatedly, often with a different plug or receptacle. “Connector” may also refer to the plug portion of a fiber termination, which is attached to an optical device. Optical devices include, for example, optical sensors (photoelectric diodes) and light sources (LED's, laser diodes). The termination of an optical fiber may be indirect, i.e., the fiber may be connected to some other (passive) optical device, such as a beam splitter or polarizer, before the light beam is directed to the active optical device. The present invention is generally directed to a connector, although this term should not be construed in a limiting sense since the present invention may inherently provide a permanent, as well as temporary connection or termination.
In the fiber optic connector described in U.S. Pat. No. 5,381,498, the connector has a plug and a receptacle, the plug having a fiber-receiving, V-shaped groove for each fiber to be interconnected, with the end of the fiber terminating in the middle of the groove. The receptacle has a plate which retracts as the plug is inserted, whereby another fiber is lowered into the V-groove of the plug. Upon full insertion of the plug, the two fiber ends are in contact, and the fiber secured to the receptacle is elastically deformed to maintain a continuous compressive load between the terminal ends of the fibers. The connector provides for the quick disconnection and reconnection of a plurality of optical fiber pairs, without the use of ferrules or other alignment members. High strength fiber may be used to withstand repeated insertions and bowing of the fibers. The exact lengths of fibers (i.e., the relative locations of their terminal ends in the plug and receptacle) are not critical since tolerance is provided by the slack taken up in the bowed receptacle fiber (the terminal portion of the fiber secured to the plug does not bow, but always remains straight). The ends of the fibers may be prepared by simply cleaving and beveling; the end faces may optionally be cleaved at an angle (i.e., non-orthogonal to the fiber axis) to reduce signal reflections.
Many fiber optic splices employ plate elements having fiber-receiving grooves, with mechanisms for clamping the terminal ends of the fibers in a common groove. Some of these devices are designed to interconnect a plurality of pairs of fibers, such as the splice shown in U.S. Pat. No. 5,151,964. In U.S. Pat. No. 4,028,162, fibers approach alignment grooves at a glancing angle and are held temporarily while a connector plate is adhered to the interconnected fibers. For other examples of techniques involving bowed fibers entering alignment grooves, see U.S. Pat. Nos. 4,077,702, 4,148,559, 4,322,127 and 5,080,461, and French Patent Application No. 2,660,442. Some of the connector designs using the principle of bowing a fiber into a fiber-alignment groove are rather complex and require many parts, such as the designs seen in U.S. Pat. Nos. 4,045,121, 4,218,113 and 4,767,180.
Such an attachment system may be mechanical, such as a clamp or set of clamps or it may be a type of adhesive. A mechanical system may also include strength members such as layers of stranded steel wire, as disclosed in U.S. Pat. No. 5,539,849.
Useful adhesives for termination must be capable of bonding to the outer surface of the fiber, which may be formed from materials such as glass, epoxy silicones, and the like. It also must be capable of bonding to other materials used in fiber optic cables and their terminations, such as polymeric coating layers, and strengthening fibers used to surround the optical fibers, and plastics from which the holder is formed. The strengthening fibers are typically aromatic polyamide fibers derived from p-phenylenediamine and terephthaloyl chloride, available commercially as Nomex® or Kevlar®.
U.S. Pat. No. 4,699,462 discloses a method for forming a termination between a fiber optic cable having a centrally positioned optical fiber, a plurality of surrounding reinforcements, and a component housing. An adhesive, preferably a heat activated adhesive, is applied within the termination and heat shrink tubing is applied in order to force the reinforcement fibers into adhesive engagement with the adhesive layer. Bond formation occurs primarily at the interface between the cladding on the optical fiber core, and reinforcement strands. The adhesive does not provide bonding to the heat shrink tubing; it is present to provide reinforcement to the termination.
U.S. Pat. No. 5,058,984 discloses a fiber optic cable connector comprising a plastic outer sleeve to be optically couple to another optical fiber cable, carrying at one end, connection means for coupling, a tubular gripping member which adheres the fiber to the outer sleeve or holder, which is deformed by application of force so as to grip the end portion of the plastic outer sleeve and a ferrule mounted within the other end of the connector body supporting an exposed end portion of an optical fiber. The optical fiber is adhered to the ferrule with adhesive material. The ferrule is ceramic and the exposed end of the fiber is set with a light curable resin, generally blue light where the ferrule is formed of zirconia. This allows a setting time to be reduced to about 60 seconds. It is disclosed that such adhesive might not adhere sufficiently strongly to the plastics outer sleeve; therefore the adhesive material is used to secure the end portion within the ferrule, and does not need to provide any adhesive to the plastic outer sleeve.
U.S. Pat. No. 5,048,915 discloses a terminus wherein the optical fiber, buffer and outer jacket of the cable are held securely to a terminus body by means of an adhesive, which is placed into the bore portion of the terminus as ring-shaped pellets through which the fiber can pass, and subsequently heated to form a viscous but flowable state.
U.S. Pat. No. 5,321,784 discloses pull-proof, modular fiber optic connector systems which may be secured by means of epoxy resins.
As can be seen, conventional fiber optic connector assemblies have required the use of additional positioning or bonding means in order to resist disruptive force, even with the use of adhesives. This has been especially true for optical fibers have epoxy silicone inner coatings, close to the cladding, which are particularly difficult to adhere. Issues have also existed regarding means for introducing the adhesive. It would be very desirable to eliminate such means and be able to provide a system wherein the bond is formed solely from an adhesive which adheres the optical fiber to the outer holder of the connector, and adheres to the fiber as well as the inner epoxy silicone coating, the strengthening fibers, and the outer polymeric coating without requiring additional positioning means such as heat shrink tubing, gripping members and the like.
SUMMARY OF THE INVENTION
The invention provides an optical fiber connector comprising an optical fiber, and a termination or interconnection bonded in place by means of a curable adhesive.
Specifically, the invention provides a curable adhesive composit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fiber optic connector containing a curable adhesive composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fiber optic connector containing a curable adhesive composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fiber optic connector containing a curable adhesive composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2522862

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.