Fiber optic cable saddle

Optical waveguides – Accessories – External retainer/clamp

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06636679

ABSTRACT:

BACKGROUND OF THE INVENTION
A. Field of the Invention
The present invention relates generally to the communications field, and, more particularly to a fiber optic cable saddle for securing and routing fiber optic cables on a printed circuit board (PCB) or other component used in the communications field.
B. Description of the Related Art
Presently, it is a problem in the field of communication cable installation to ensure the precise placement of the communication cable without the possibility of damage to the communication cable by the provision of tight bends, or inappropriate use of fasteners, or inadequate support to the communication cable. Such communication cables include conventional telephone cable having a plurality of copper conductors, coaxial cable, optical fiber, or the like. In all of these applications, the minimum radius of curvature of the communication cable is well defined, and bending the communication cable in a tighter bend can cause damage to the communication medium housed within the cable. The installer of communication cable is thus faced with the problem of routing the communication cable over surfaces, which typically include sharp bends, without over bending the communication cable, yet also securing the communication cable to these surfaces in a manner to ensure protection from damage.
This problem is further heightened when fiber optic cables are used. Glass fibers used in such cables are easily damaged when bent too sharply and require a minimum bend radius to operate within required performance specifications. The minimum bend radius of a fiber optic cable depends upon a variety of factors, including the signal handled by the fiber optic cable, the style of the fiber optic cable, and equipment to which to fiber optic cable is connected. For example, some fiber optic cables used for internal routing have a minimum bend radius of 0.75 inches, and some fiber optic cables used for external routing have a minimum bend radius of 1.0 inches.
Damaged fiber optic cables may lead to a reduction in the signal transmission quality of the cables. Accordingly, fiber optic cables are evaluated to determine their minimum bend radius. As long as a fiber optic cable is bent at a radius that is equal to or greater than the minimum bend radius, there should be no reduction in the transmission quality of the cable. If a fiber optic cable is bent at a radius below the minimum bend radius determined for such cable, there is a potential for a reduction in signal transmission quality through the bend. The greater a fiber optic cable is bent below its minimum bend radius, the greater the potential for breaking the fibers contained in the cable, and the shorter the life span of the cable.
Furthermore, the recent increase in bandwidth requirements for telecommunications systems has resulted in more densely packed equipment and fiber optic cables than prior systems. Many carriers or other consumers of optical communications equipment have a very limited floor space in which to place new equipment and fiber optic cables. For example, some carriers may only have a single open bay (or shelf) in which to place new equipment and fiber optic cables. If the communications equipment can be more densely packed, then a greater amount of equipment and fiber optic cables may be placed within the available space. Thus, it is even more necessary now to be able to bend fiber optic cables around comers and other obstacles in order to route the cables to and from equipment such as computers, connector panels, junction boxes, etc.
For example, in a telephone switching office, the various switching components are split onto different printed circuit boards (PCBs). Fiber optic cables may be used to route the signals between the different PCBs or between components on a single PCB. In a conventional arrangement, the PCB is generally placed in a shelf or rack alongside other such PCBs.
The fiber optic cables are used for transferring signals between reception ports and electro-optical converters provided on the PCB or PCBs. The fiber optic cables generally come in three and six foot lengths with connectors provided at the ends thereof. However, the PCB may have a width of only several inches. To accommodate for the extra length of the fiber optic cables, such cables are routed around and secured to the PCB via a plurality of clips. The clips are secured to the PCB via holes drilled through the PCB.
The fiber optic cables are generally routed, by hand, through the clips, without bending the fiber optic cables beyond the minimum bend radius. Whether this requirement is satisfied depends on the individual operator doing the assembly. The fiber optic cables ideally should be routed in to prevent stress being applied to the cables.
Unfortunately, conventional clips increase the stress applied to the cables. They are made of hard materials, and are always either open, locked closed, or gated. Rigid closed or gated clips may break or damage the fiber optic cable when the cable is forced into or pinched by such clips. Rigid open clips do not present such a problem, but typically hold only a single cable and fail to adequately retain the cable in the clip. Furthermore, conventional clips are often difficult to use, and too large and generic to work in new, denser communications systems.
Thus, there is a need in the art to provide an inexpensive closed means for securing and routing multiple fiber optic cables in the denser optical communications systems that may be easily customized by an operator and prevent the fiber optic cables from being damaged or bent beyond their minimum bend radii.
SUMMARY OF THE INVENTION
The present invention solves the problems of the related art by providing a fiber optic cable saddle for securing and routing fiber optic cables on a printed circuit board (PCB) or other component used in the communications field. The fiber optic cable saddle completely encloses the cables, is easy to use, and is does not damage the cables when installing the cables within the saddle. If the fiber optic cable is pulled when contained within the saddle, the fiber optic cable saddle will flex and release the cable before the cable is damaged.
In accordance with the purpose of the invention, as embodied and broadly described herein, the invention comprises a fiber optic cable saddle having: a spiral-shaped body portion having a first end radially disposed within a second end; and an attachment mechanism connected to the spiral-shaped body portion.
Further in accordance with the purpose of the invention, as embodied and broadly described herein, the invention comprises a method of using a fiber optic cable saddle having a spiral-shaped body portion having a first end radially disposed within a second end, and an attachment mechanism connected to the spiral-shaped body portion, comprising: attaching to the fiber optic cable saddle to a surface with the attachment mechanism; flexing the spiral-shaped body portion into an open position; placing a fiber optic cable or a plurality of fiber optic cables within the flexed-open body portion; and releasing the flexed-open body portion to return the body portion to a spiral shape.
Still further in accordance with the purpose of the invention, as embodied and broadly described herein, the invention comprises a cable saddle having: a spiral-shaped body portion having a first end radially disposed within a second end; and an attachment mechanism connected to the spiral-shaped body portion.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description. It is to be understood that both the foregoing general description and the following detailed descriptio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fiber optic cable saddle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fiber optic cable saddle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fiber optic cable saddle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3167436

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.