Fiber management frame having connector platform

Optical waveguides – Accessories

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S135000, C385S137000

Reexamination Certificate

active

06654536

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to interconnection closures and, more particularly, to interconnection closures having a fiber management frame that optionally includes a connector platform to facilitate the interconnection of respective pairs of pre-connectorized optical fibers.
BACKGROUND OF THE INVENTION
Fiber optic networks typically include interconnection closures at various connection points throughout the fiber optic network. Typically, these interconnection closures include splice closures, patch closures and the like. For example, splice closures commonly house the splices required to interconnect the optical fibers of one or more fiber optic feeder cables to respective ones of the optical fibers of a fiber optic drop cable. By housing the splices, a splice closure protects the spliced end portions of the optical fibers from environmental degradation, strain and other deleterious forces, thereby increasing the reliability and quality of the splices.
While fiber optic networks have traditionally served as the backbone or trunkline of communication networks to transmit signals over relatively long distances, fiber optic networks are gradually being extended closer to the end points of the communications networks. In this regard, fiber optic networks have been developed that deliver fiber-to-the-curb, fiber-to-the-home; fiber-to-the-business, fiber-to-the-desk and the like. In each of these different types of applications, a closure must be capable of splicing different types of cables to establish the proper interconnections. In this regard, the closure utilized in a fiber-to-the-home, fiber-to-the-business, or fiber-to-the-desk application is mounted upon a fiber optic feeder cable and one or more fiber optic drop cables to permit at least some of the optical fibers of the feeder cable to extend uninterrupted through the splice closure while connecting other optical fibers of the fiber optic feeder cable with optical fibers of a drop cable. In contrast, a closure that is utilized in a fiber-to-the-curb application is mounted upon not just a fiber optic feeder cable and one or more drop cables, but also an electrical feeder cable. In this application, the closure must facilitate the connection of one or more electrical conductors of the electrical feeder cable to corresponding electrical conductors of the drop cable, while permitting the remainder of the electrical conductors to extend uninterrupted through the closure. Additionally, the closure must facilitate the connection of one or more of the optical fibers of the fiber optic feeder cable with respective optical fibers of the drop cable while continuing to permit at least some of the optical fibers of the fiber optic feeder cable to extend uninterrupted through the closure.
In either type of closure, the optical fibers may be connected in different manners. In a splice closure, pairs of optical fibers are spliced together. In splice closures utilized in fiber-to-the-home and fiber-to-the-curb applications, for example, some of the optical fibers of the fiber optic feeder cable are spliced to respective optical fibers of the drop cable. In order to house the splice connections between respective pairs of optical fibers and to protect the splice connections, splice closures generally include one or more splice trays.
The splice connections established within a splice closure are high quality connections. Thus, the optical signals transmitted via respective pairs of optical fibers are not substantially attenuated or otherwise degraded by the splice connection. However, a technician must generally be quite skilled and well trained to accurately splice each respective pair of optical fibers within a splice closure. Even for a technician who is skilled and well trained, the process of splicing each respective pair of optical fibers may be a time consuming task if a relatively large number of splice connections must be established. Depending upon the type of splice connection, such as a mechanical splice, a fusion splice or the like, the technician may also be required to carry a substantial amount of equipment in order to splice the respective pairs of optical fibers.
Although not as common as splice closures, another type of closure has been developed to connect pre-connectorized optical fibers. This type of closure generally includes a number of connector sleeves, typically mounted within a connector bulkhead. By mounting fiber optic connectors upon the end portions of the optical fibers, pairs of optical fibers may be connected by inserting the fiber optic connectors mounted upon the end portions of the optical fibers into opposite ends of a connector sleeve. As will be apparent, a technician may readily connect a number of pairs of optical fibers and may easily reconfigure the connections by merely inserting the fiber optic connectors into different connector sleeves. However, this type of closure requires that fiber optic connectors be mounted upon the end portions of each of the optical fibers to be connected. The connectorization of the optical fibers not only requires the technician to provide the connector hardware, but may also require a substantial amount of time to mount the fiber optic connectors on the end portions of each optical fiber to be connected within the closure. Moreover, the resulting connection is generally of a lower quality than a splice connection with the optical signals being attenuated or otherwise degraded to a greater degree than if the optical fibers had been spliced together. In addition, this type closure typically only includes a small number of connector sleeves, such as six or eight connector sleeves, such that the number of pairs of optical fibers that may be connected in this manner is disadvantageously limited.
Different closures are generally provided to establish splice connections between respective pairs of optical fibers and to connect respective pairs of pre-connectorized optical fibers. Since different closures are provided depending upon the type of connection to be established, technicians must undergo additional training to be able to install each type of closure. Additionally, since different types of closures must be manufactured, additional costs are incurred to design and fabricate each different type of closure and to maintain a stock of each different type of closure in inventory. Accordingly, it would be desirable to provide a single closure capable of connecting respective pairs of optical fibers either by splicing or by inserting the connectorized end portions of the optical fibers into connector sleeves.
SUMMARY OF THE INVENTION
A fiber management frame and an interconnection closure that includes the fiber management frame are provided that may be configured to house splice connections or to connect pre-connectorized optical fibers by means of respective connector sleeves. In addition, the fiber management frame of the present invention is designed to facilitate the configuration of the closure and the routing of optical fibers therethrough.
According to one aspect of the present invention, a fiber management frame for an interconnection closure is provided that includes a frame, at least one optical fiber connection tray carried by the frame, and a connector platform including at least one connector sleeve mounted to the frame. According to one advantageous embodiment, the connector platform is detachably mounted to the frame such that the connector platform may be removed from the frame. By removing the connector platform from the frame, the fiber management frame may be converted from a fiber management frame adapted to connect respective pairs of pre-connectorized optical fibers by means of connector sleeves to a fiber management frame adapted to establish splice connections between respective pairs of optical fibers. Thus, a single fiber management frame may advantageously support each of these different types of connections.
According to one embodiment, the frame defines a plurality of compartments. At least one optical

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fiber management frame having connector platform does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fiber management frame having connector platform, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fiber management frame having connector platform will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3125677

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.