Fiber low profile network interface device

Optical waveguides – Accessories – Splice box and surplus fiber storage/trays/organizers/ carriers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S147000

Reexamination Certificate

active

06661961

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a network interface device usable with a fiber optic network.
2. Description of the Prior Art
It is relatively common in the electronics industry, to transfer signals by way of an optical fiber due to a number of advantages that light transmission has over transmission of electrical signals, namely the very high transmission rate of signals and the insensitivity of light signals to electrical and magnetic fields. One common example of high-speed data transmission is in the field of telecommunications.
In this regard, it is common to provide a junction box for the connection of service. Such a junction box is commonly known as a Network Interface Device, and has an area restricted to the service company which can be locked off, and an area which is accessible to the user. In the case of fiber, there is no adequate Network Interface Device which provides proper cable management while at the same time providing for a relatively small volume enclosure. This is mainly due to the fact that the fiber cable cannot be severely twisted, or coiled tightly into small radii, otherwise it loses its optical transmission characteristics.
SUMMARY OF THE INVENTION
The above-mentioned shortcomings in the prior art have been rectified by this invention which provides a fiber optic interconnection enclosure, comprising a housing enclosure, and a fiber optic interconnection divider wall. The divider wall divides the housing enclosure into a telecom interconnection area and a system interconnection area, the interconnection divider wall having a connection interface to provide the interface between the telecom interconnection area and the system interconnection area.
In the preferred embodiment of the invention, the fiber optic interconnection divider wall is pivotal about a hinge in said housing enclosure. The housing enclosure is comprised of a first, housing portion having a back wall, and a second housing portion hinged to the first housing portion and movable relative thereto about the hinge. The fiber optic interconnection divider wall is also hinged relative to the first and second housing portions and rotatable relative thereto. Preferably, the first and second housing portions all rotate about the same pivot axis.
In the preferred version, the fiber optic interconnection divider wall includes an interface wall extending transversely of the pivot axis. The interface wall extends in a horizontal plane, and the connection interface comprises a fiber optic header. Preferably, the mating axis for the header is vertical.
In the preferred version, the fiber optic interconnection divider wall includes a rotatable work tray on the back side thereof, which pivots about a horizontal axis, whereby the fiber optic interconnection divider wall can be rotated to its fully open position, and the work tray rotated downwardly to a position adjacent to horizontal. Preferably, the work tray includes a fiber cable splice holder. Also preferably, the work tray includes a retaining area for holding coiled fiber cable.
In another embodiment of the invention, a fiber optic interconnection enclosure comprises a housing enclosure, a fiber optic interconnection divider wall dividing the housing enclosure into a telecom interconnection area and a system interconnection area. The fiber optic interconnection divider wall includes a rotatable work tray, which pivots about a horizontal axis, whereby the rotatable work tray can be rotated downwardly to a position adjacent to horizontal.
Preferably, the fiber optic interconnection divider wall is pivotal about a hinge in the housing enclosure. The housing enclosure is comprised of a first housing portion having a back wall, and a second housing portion hinged to the first housing portion and movable relative thereto about the hinge. The fiber optic interconnection divider wall is also hinged relative to the first and second housing portions and rotatable relative thereto. The fiber optic interconnection divider wall, and first and second housing portions, all rotate about the same pivot axis. The fiber optic interconnection divider wall includes an interface wall extending transversely of said pivot axis.
Also preferably, the fiber optic interconnection divider wall has a connection interface to provide the interface between the telecom interconnection area and the system interconnection area. The fiber optic interconnection divider wall extends in a horizontal plane, and said connection interface comprises a fiber optic header having header halves on opposite sides of the plane. The mating axis for the header is vertical. The rotatable work tray is positioned on the back side of the fiber optic interconnection divider wall and pivots about a horizontal axis, whereby the fiber optic interconnection divider wall can be rotated to its fully open position, and the work tray rotated downwardly to a position adjacent to horizontal. The work tray preferably includes a fiber cable splice holder. The work tray includes a retaining area for holding coiled fiber cable.
In yet another embodiment of the invention, a fiber optic interconnection enclosure comprises a housing enclosure, a connection interface defining an interface between a telecom interconnection and a system interconnection, and a rotatable work tray that pivots about a horizontal axis. The rotatable work tray can be rotated downwardly to a position adjacent to horizontal.
In the preferred version, the fiber optic interconnection enclosure further comprises a fiber optic fiber optic interconnection divider wall dividing the housing enclosure into a telecom interconnection area and a system interconnection area. Preferably, the rotatable work tray is positioned on a back side of the fiber optic interconnection divider wall and pivots about a horizontal axis, whereby the fiber optic interconnection divider wall can be rotated to its fully open position, and the work tray rotated downwardly to a position adjacent to horizontal. The fiber optic interconnection divider wall has a connection interface to provide the interface between the telecom interconnection area and the system interconnection area. The fiber optic interconnection divider wall includes an interface wall which extends in a horizontal plane, and the connection member comprises a fiber optic header having header halves mounted to the interface wall.
Preferably, the work tray includes a fiber cable splice holder. The work tray includes a retaining area for holding coiled fiber cable.


REFERENCES:
patent: 4595255 (1986-06-01), Bhatt et al.
patent: 4824196 (1989-04-01), Bylander
patent: 4949376 (1990-08-01), Nieves et al.
patent: 5367598 (1994-11-01), Devenish, III et al.
patent: 5668911 (1997-09-01), Debortoli
patent: 5790741 (1998-08-01), Vincent et al.
patent: 5802237 (1998-09-01), Pulido
patent: 6193420 (2001-02-01), Sikorski, Jr.
patent: 6385381 (2002-05-01), Janus et al.
patent: 6389212 (2002-05-01), Yamagata

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fiber low profile network interface device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fiber low profile network interface device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fiber low profile network interface device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3163423

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.