Ferrous picrate produced by an isolation process

Organic compounds -- part of the class 532-570 series – Organic compounds – Heavy metal containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C044S323000, C044S367000

Reexamination Certificate

active

06833466

ABSTRACT:

TECHNICAL FIELD
This invention relates to the production of a fuel additive using an isolation process to produce ferrous picrate.
BACKGROUND
There are many patents dealing with process for producing ferrous picrate fuel additives. These include U.S. Pat. Nos. 2,506,539, 3,282,858, 4,073,626, 4,099,930, 4,129,421, 4,265,639, 4,424,063, 5,087,268, 5,359,103, 5,720,783, and 5,925,153, each of which is incorporated herein by reference. Only U.S. Pat. Nos. 5,087,268 and 5,925,153, incorporated by reference, employ metallic iron; and these both utilize powdered elemental iron. The large surface area of powdered elemental iron facilitates the desired reaction.
When the iron is freely exposed to the reaction solutions, however, iron particles might remain within the liquid fuel additive that is produced and to cause such additive to degrade over time.
SUMMARY OF THE INVENTION
The present invention isolates a material which contains a metal, such as iron, and which is preferably an iron containing metallic source, from physically entering the product of the reaction while permitting the picric acid to contact and react with the iron.
This is preferably accomplished by enclosing the material containing the metal, such as iron, within any material, designated as the isolating material, that is permeable to the picric acid and liquid containing the picric acid, which has pores of such size that the particles of the material containing the iron cannot pass through such pores, and which comprises material that will not react with the iron, the picric acid, or any other substance within the reactant solution. The iron containing material may comprise an iron containing metallic source in a form such as, for example, powder, filings, objects, particles, nails, wire, steel wool, or combinations of any thereof. In another embodiment, the iron containing material may comprises a non-powdered metallic iron such as filings, objects, particles, nails, wire, steel wool, or combinations of any thereof.
Enclosure can be accomplished by completely surrounding the iron containing metallic source with the isolating material or by installing a filter comprising the isolating material on the downstream, the upstream, or the downstream and the upstream side of a vessel holding the iron containing metallic source and through which the picric acid and liquid containing the picric acid are circulated. The product produced by this process, consequently, does not contain the particles of iron found in fuel additives in accordance with the processes of the prior art.
BEST MODE OF THE INVENTION
The present process may employ any solution of picric acid in a solvent that is known in the art for reacting with an iron containing metallic source to produce ferrous picrate. In one embodiment, the iron containing metallic source reacts with the picric acid to produce ferrous picrate. Preferably, however, a solution that is approximately three percent picric acid (i.e., three grams of picric acid per one hundred milliliters of solvent) is produced by dissolving picric acid in a solvent. Since dry picric acid is explosive, the picric acid is supplied with water. Acceptable solvents that may be used include an aromatic solvent such as benzene, toluene, xylene, a high aromatic petroleum fraction such as Solvent 100, other aromatic solvents and high aromatic petroleum fractions disclosed in the art used for a similar purpose, or any combinations thereof are also acceptable and will hereinafter simply be termed aromatic solvents and high aromatic petroleum fractions. A practical percentage of picric acid which may be achieved within a reasonable time is 2.8 percent. The more picric acid which is dissolved, the better. It is, however, extremely difficult to dissolve significantly more than three percent. The percentage of picric acid which has been dissolved is determined analytically, preferably by titration.
After combining the picric acid with the solvent, water is removed from the solution using any known technique. Preferably, though, settling is allowed to occur so that the water is vertically separate from the solution of picric acid in the solvent. The top layer may be removed by decantation or siphoning, or the bottom layer may be removed by draining. One of the various alternate methods for removal is centrifugal separation; another is azeotropic distillation.
The solution resulting from this preferred mixture is termed a pre-mix (as also, for the purposes of this patent application, is any solution of picric acid in a solvent, after such solution has been dewatered, that is prepared in accordance with the art of preparing ferrous picrate; such solution before dewatering is termed a precursor to the pre-mix solution) and has subsequently added to it an aliphatic alcohol. A non-exclusive list of acceptable aliphatic alcohols includes ethanol, isopropanol, butanol, or any combinations thereof. Butanol is preferred. It is preferable to add the aliphatic alcohol to the pre-mix rather than adding the pre-mix to the aliphatic alcohol in order to prevent the precipitation of some of the dissolved picric acid. Preferably, 25 percent butanol is combined with 75 percent pre-mix on a volume basis.
To the resultant solution, some water, preferably 0.1 to 0.5 percent and most preferably approximately 0.1 percent, is added. This is to control the quantity of water since some water is necessary for the desired reaction to occur, but an excess amount causes instability and degradation in the product. In another embodiment, the amount of water may be about 1 percent. In this embodiment, the reaction would proceed rapidly and the iron concentration may exceed 2,000 parts per million of ferrous iron. The ferrous iron may be diluted with about 3 times the amount of dry solvent to reduce the water content to about 0.25 percent, wherein the ferrous iron would be about 500 parts per million.
Preferably, the solution is agitated after the initial combination of ingredients and each addition of an ingredient.
An iron containing metallic source in the form of powder, filings, other particles, objects or any combinations thereof (e.g., nails, wire, steel wool, etc.) is enclosed within a material, designated the isolating material, that is permeable to the picric acid and liquid containing the picric acid, which has pores of such size that the particles of the material containing the metal cannot pass through such pores, and which is composed of material that will not react with the iron containing metallic source, the picric acid, or any other substance within the reactant solution. In one exemplary embodiment, the metallic may be iron or an iron alloy.
Preferably, the isolating material is cotton cloth. Another non-exclusive example of acceptable material is stainless steel screening of approximately 200 mesh. Other acceptable materials that may be used for the isolating material include, without limitation, polyethylene, polyester, polypropylene, or a combination of polyester and polypropylene. Enclosure may be accomplished by substantially or completely surrounding the iron containing metallic source with the isolating material or by installing a filter comprising the isolating material on the downstream, the upstream, or the downstream and the upstream side of a vessel holding the iron containing metallic source and through which the picric acid and liquid containing the picric acid are circulated.
In another embodiment, the iron containing metallic source is placed in a holder which allows the solution to circulate around the iron containing metallic source. The holder may be a basket having connected sides and a bottom connected to each side and having apertures to permit the solution to flow through the basket and around the iron containing metallic source. One or more walls may optionally be combined with the sides of the basket, with each other or the bottom of the basket to form a unitary structure, e.g., a forming at least one hemisphere in the basket.
If the iron containing metallic source is substantially or completely surrounde

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ferrous picrate produced by an isolation process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ferrous picrate produced by an isolation process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ferrous picrate produced by an isolation process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3333413

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.