Ferroelectric liquid crystal device comprising a polymer and...

Liquid crystal cells – elements and systems – Cell containing liquid crystal of specific composition – Polymer liquid crystal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C349S172000, C349S184000, C349S088000, C349S085000, C349S033000

Reexamination Certificate

active

06215543

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to novel ferroelectric liquid crystal devices.
2. Discussion of Prior Art
Liquid crystal materials are widely used in liquid crystal displays such as watches, calculators etc. Most displays of this type consist of a thin film of a liquid crystalline composition sandwiched in a cell between two substrates, at least one of which is transparent and having transparent electrodes on their inner surfaces. On applying a potential difference across the electrodes the alignment of the molecules of the liquid crystalline composition is altered resulting in an electro-optic effect in the material, which is exploited by the display. Most often electro-optic effects in the nematic liquid crystal phase are exploited in such displays. Examples of types of displays include the twisted nematic, the Freedericksz effect device, cholesteric memory mode device, cholesteric to nematic phase change effect device, dynamic scattering effect device, two frequency switching effect device and the ‘supertwist’ effect device. Other types of device include active matrix twisted nematics, pi-cells and ferroelectric liquid crystal devices.
Ferroelectric smectic liquid crystal materials, which can be produced by mixing an achiral host and a chiral dopant, use the ferroelectric properties of the tilted chiral smectic C, F, G, H, I, J and K phases. The chiral smectic C phase is denoted S
C
* with the asterisk denoting chirality. The S
C
* phase is generally considered to be the most useful as it is the fastest switching. Ferroelectric smectic liquid crystal materials should ideally possess the following characteristics: low viscosity, controllable spontaneous polarisation (Ps) and an S
C
* phase that persists over a broad temperature range, which should include ambient temperature and exhibits chemical and photochemical stability. Materials which possess these characteristics offer the prospect of very fast switching liquid crystal containing devices. Some applications of ferroelectric liquid crystals are described by J. S. Patel and J. W. Goodby in Opt. Eng., 1987, 26, 273.
In ferroelectric liquid crystal devices the molecules switch between different alignment directions depending on the polarity of an applied electric field. These devices can be arranged to exhibit bistability where the molecules tend to remain in one of two states until switched to the other switched state. Such devices are termed surface stabilised ferroelectric devices, e.g. as described in U.S. Pat. No. 5,061,047 and U.S. Pat. No. 4,367,924 and U.S. Pat. No. 4,563,059. This bistability allows the multiplex addressing of quite large and complex devices.
One common multiplex display has display elements. i.e. pixels, arranged in an x, y matrix format for the display of e.g. alpha numeric characters. The matrix format is provided by forming the electrodes on one slide as a series of column electrodes, and the electrodes on the other slide as series of row electrodes. The intersections between each column and row form addressable elements or pixels. Other matrix layouts are known, e.g. seven bar numeric displays.
There are many different multiplex addressing schemes. A common feature involves the application of a voltage, called a strobe voltage to each row or line in sequence. Coincidentally with the strobe applied at each row, appropriate voltages, called data voltages, are applied to all column electrodes. The differences between the different schemes lies in the shape of the strobe and data voltage waveforms.
Other addressing schemes are described in GB-2,146,473-A; GB-2,173,336-A; GB-2,173,337-A; GB-2,173,629-A; WO 89/05025: Harada et al 1985 S.I.D. Paper 8.4 pp 131-134; Lagerwall et al 1985 I.D.R.C. pp 213-221 and P Maltese et al in Proc 1988 I.D.R.C. p 90-101 Fast Addressing for Ferroelectric LC Display Panels.
The material may be switched between its two states by two strobe pulses of opposite sign, in conjunction with a data waveform. Alternatively, a blanking pulse may be used to switch the material into one of its states. Periodically the sign of the blanking and the strobe pulses may be alternated to maintain a net d.c. value.
These blanking pulses are normally greater in amplitude and length of application than the strobe pulses so that the material switches irrespective of which of the two data waveforms is applied to any one intersection. Blanking pulses may be applied on a line by line basis ahead of the strobe, or the whole display may be blanked at one time, or a group of lines may be simultaneously blanked.
It is well known in the field of ferroelectric liquid crystal device technology that, in order to achieve the highest performance from devices, it is important to use mixtures of compounds which give materials possessing the most suitable ferroelectric smectic characteristics for particular types of device.
Devices can be assessed for speed by consideration of the response time vs pulse voltage curve. This relationship may show a minimum in the switching time (t
min
) at a particular applied voltage (V
min
). At voltages higher or lower than V
min
the switching time is longer than t
min
. It is well understood that devices having such a minimum in their response time vs voltage curve can be multiplex driven at high duty ratio with higher contrast than other ferroelectric liquid crystal devices. It is preferred that the said minimum in the response time vs voltage curve should occur at low applied voltage and at short pulse length respectively to allow the device to be driven using a low voltage source and fast frame address refresh rate.
Typical known materials (where materials are a mixture of compound having suitable liquid crystal characteristics) which do not allow such a minimum when included in a ferroelectric device include the commercially available materials known as SCE13 and ZLI-3654 (both supplied by Merck UK Ltd. Poole, Dorset). A device which does show such a minimum may be constructed according to PCT GB 88/01004 and utilising materials such as e.g. commercially available SCE8 (Merck UK Ltd). Other examples of prior art materials are exemplified by PCT/GB/86/00040, PCT/GB87/00441 and UK 2232416B.
There are problems relating to the mechanical stability of ferroelectric liquid crystal devices. For example if a force is applied to a device. e.g. it is dropped or it is subjected to some sort of impact then the cell may be damaged, usually because the alignment is adversely affected.
SUMMARY OF THE INVENTION
The present invention overcomes the above problems relating to the mechanical stability of ferroelectric liquid crystal cells by the incorporation of a monomer material with a ferroelectric liquid crystal material.
According to this invention a liquid crystal device comprises two spaced cell walls each bearing electrode structures and treated on at least one facing surface with an alignment layer, a layer of a smectic liquid crystal material enclosed between the cell walls, characterised in that the liquid crystal material contains a small amount of monomer.
According to a further aspect of this invention the liquid crystal material may also contain a photoinitiator.
According to a further aspect of this invention the monomer may be cured with or without the presence of a field.
The material may be cured in an isotropic or preferably a liquid crystal phase, for example a S
C
phase.
Preferably the monomer is present up to an amount of 10 wt %. more preferably up to 5% and even more preferably the amount of monomer present lies in the range 0.01-2.0%.
Typically the curing involves UV curing or heat curing.
On curing the monomeric material may be partly or fully polymerised.
A further aspect of this invention provides for a method of reducing the susceptibility of ferroelectric liquid crystal cells to impact damage comprising the steps of providing a liquid crystal device comprising two spaced cell walls each bearing electrode structures and treated on at least one facing surface with an alignment layer, a layer of a smectic liquid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ferroelectric liquid crystal device comprising a polymer and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ferroelectric liquid crystal device comprising a polymer and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ferroelectric liquid crystal device comprising a polymer and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2552369

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.