Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing compound containing saccharide radical
Reexamination Certificate
2003-02-18
2004-05-25
Carr, Deborah (Department: 1621)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Preparing compound containing saccharide radical
C435S144000, C435S157000, C435S161000, C435S162000
Reexamination Certificate
active
06740508
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to methods of forming products derived from oil and meal extracted from corn which preferably has an oil content of about 3% by weight to about 6% by weight.
BACKGROUND OF THE INVENTION
Corn,
Zea mays
L., is grown for many reasons including its use in food and industrial applications. Corn oil and corn meal are two of many useful products derived from corn.
Commercial processing plants utilizing conventional methods for extracting corn oil from conventional corn separate the corn seed into its component parts, e.g., endosperm, germ, tipcap, and pericarp, and then extract corn oil from the corn germ fraction. Corn germ produced by wet or dry milling is processed either by pressing the germ to remove the oil or by flaking the germ and extracting the oil with a solvent. In both processes, because the germ was separated from the remainder of the kernel, many or all of the valuable components of the endosperm fraction are absent from the oil.
During dry milling, the corn kernel after removal of the germ is ground into flour (i.e., “meal”) and processed without separating the remaining various components of the grain. The milled products, i.e. grits, meal and flour, are then subjected to heat treatments during processing.
In the wet milling process, corn is placed in large steep tanks to be soaked for 2 to 3 days in a mixture of warm water and sulfur dioxide or dilute sulfuric acid. The steeping facilitates the separation of the grain into its component parts (i.e., germ, fiber, starch and gluten (protein)). The germ is then separated out. Similarly, fibrous materials may be screened off and the starch and protein are separated using density differences. Often, further milling is needed to separate out the starch and protein.
A corn-based feed product known as hominy feed is obtained from the dry milling process and is a mixture of corn bran, corn germ, and endosperm, and has a minimum of about 4% by weight oil. Several steps including cracking, grinding, sieving, and blending are required to manufacture hominy feed and the resulting particle size of hominy feed is small relative to meal made by the extraction method described herein.
Industry and health advocates are continually in search of more economical or nutritious products derived from corn. Thus, there exists a need for improved products derived from corn oil and corn meal.
BRIEF SUMMARY OF THE INVENTION
Finished products containing corn oil and/or corn meal obtained from conventional corn include, for example, cooking oil, animal feed, aquaculture feed, paper and paper products, numerous food products such as salad dressings, extruded and/or puffed snack foods, products containing corn sweeteners, cereals, chips, puddings, candies, and breads.
One aspect of the invention provides a nutritious animal feed comprising the corn meal remaining after extraction of oil from corn. Such corn typically has oil content of from about 3% by weight to about 6% by weight. The animal feed can comprise other nutritious products such as vitamins, minerals, seed-derived meal, meat and bone meal, salt, amino acids, feather meal, and many others used in the art of feed supplementation. Further, meal prepared using whole corn may be blended with the meal of the present invention. The animal feed composition can be tailored for particular uses such as for poultry feed, swine feed, ruminant feed such as cattle feed, equine feed, aquaculture feed, pet food and can be tailored to animal growth phases. Particular embodiments of the animal feed include growing broiler feed, swine finishing feed, cattle feed, and poultry layer finishing feed. Feed products can be made with the extracted corn meal that will have a higher relative percentage of protein and lower relative percentage of oil than similar products produced having conventional corn milling procedures.
In another embodiment, the method of processing corn includes an extracting step wherein flaked corn grain is pressed to extract an oil. Alternatively, the flaked corn grain is subject to solvent-based oil extraction. Solvents used to extract miscible or soluble substances from the flaked grain included one or more of the following: any of the hexanes, isoproplyl alcohol, supercritical CO
2
and ethyl alcohol. Extracting steps can produce a miscella and a corn meal.
In one preferred embodiment, the whole corn grain to be processed into oil and meal has an oil content of from about 3% by weight to about 6% by weight. Preferably, this corn grain has a fiber content of about 2%, a starch content of about 65%, and a total protein content of at least about 7% by weight, at least about 9% by weight, at least about 11% by weight, or from about 7% by weight to about 20% by weight. Also, preferably, the whole corn grain has a total lysine content of at least about 0.15% by weight, at least about 0.5% by weight, or from about 0.15% by weight to about 2.0% by weight. The whole corn grain to be processed also preferably has a total tryptophan content of at least about 0.03% by weight, at least about 0.20% by weight, or from about 0.03% by weight to about 2.0% by weight. In producing the desired meal, the whole corn grain can either be cracked and then flaked or may be flaked without cracking.
Preferably, the flaked or cracked and flaked corn is subjected to an oil extraction process such as solvent extraction, hydraulic pressing, expeller pressing or aqueous and enzyme extraction. Following oil extraction, a corn meal is preferably produced which has a fiber content of about 3% by weight, a starch content of about 65% by weight, and a protein content of about 9% by weight, at a moisture content of about 12% by weight. The resultant meal also preferably has a meal fat content of from about 0.2% by weight to about 2.0% by weight.
Another aspect of the invention provides a method of using extracted corn meal in an animal feed ration comprising the step of: 1) providing an extracted corn meal prepared by at least flaking whole corn and extracting the flaked corn to remove a portion of the corn oil therefrom; and 2) including the extracted corn meal in an animal feed ration.
Yet another aspect of the invention provides a method of using an extracted corn oil in a food product comprising the steps of: 1) providing an extracted corn oil obtained by at least flaking whole corn to form flaked corn and extracting the flaked corn to remove a portion of the corn oil therefrom and form the extracted corn oil; and 2) including the extracted corn oil in a food product.
Still another aspect of the invention provides a method of using extracted corn oil as a feedstock in an oil refining process. The method comprises the steps of: 1) providing an extracted crude corn oil obtained by at least flaking whole corn to form flaked corn and extracting the flaked corn to remove a portion of the corn oil therefrom and form the extracted crude corn oil; and 2) including the extracted crude corn oil in a raw material stream of an oil refining process.
The miscella remaining after extraction is preferably desolventized to produce a corn oil. The corn oil preferably has a phosphorus content of less than about 800 parts per million, a free fatty acid content of less than about 0.5% by weight and/or a neutral oil loss of less than about 3% by weight.
A preferred embodiment also provides a method of obtaining corn oil and solvent extracted corn meal from corn. Preferably, the corn has an oil content of from about 3% by weight to about 6% by weight. The method provides steps of: 1) tempering the corn; 2) cracking the tempered corn; 3) conditioning the cracked corn; 4) flaking the cracked and conditioned corn; 5) extracting the flaked corn; and 6) removing the solvent from both the corn oil and solvent extracted corn meal. The method provides a greater overall content of corn oil and concentrates the proteins in the meal. Moreover, solvent extractable pigments are removed from the solvent extracted corn meal.
Another aspect of the invention provides a corn oil-based product comprising c
Jakel Neal Torrey
Ulrich James F.
Carr Deborah
Leydig , Voit & Mayer, Ltd.
Renessen LLC
LandOfFree
Fermentation-based products from corn and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fermentation-based products from corn and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fermentation-based products from corn and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3231173