Feline polynucleotide vaccine formula

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Combination of antigens from multiple viral species

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S204100, C424S221100, C435S320100, C514S04400A

Reexamination Certificate

active

06348196

ABSTRACT:

The present invention relates to a vaccine formula allowing the vaccination of cats against a number of pathologies. It also relates to a corresponding method of vaccination.
Associations of vaccines against certain canine viruses have already been proposed in the past.
The associations developed so far were prepared from inactivated vaccines or live vaccines and, optionally, mixtures of such vaccines. Their development poses problems of compatibility between valencies and of stability. It is indeed necessary to ensure both the compatibility between the different vaccine valencies, whether from the point of view of the different antigens used or from the point of view of the formulations themselves, especially in the case where both inactivated vaccines and live vaccines are combined. The problem of the conservation of such combined vaccines and of their safety especially in the presence of an adjuvant also exists. These vaccines are in general quite expensive.
Patent Applications WO-A-90 11092, WO-A-93 19183, WO-A-94 21797 and WO-A-95 20660 have made use of the recently developed technique of polynucleotide vaccines. It is known that these vaccines use a plasmid capable of expressing, in the host cells, the antigen inserted into the plasmid. All the routes of administration have been proposed (intraperitoneal, intravenous, intramuscular, transcutaneous, intradermal, mucosal and the like). Various vaccination means can also be used, such as DNA deposited at the surface of gold particles and projected so as to penetrate into the animals' skin (Tang et al., Nature 356, 152-154, 1992) and liquid jet injectors which make it possible to transfect at the same time the skin, the muscle, the fatty tissues and the mammary tissues (Furth et al., Analytical Biochemistry, 205, 365-368, 1992).
(See also U.S. Pat. Nos. 846,946, 5,620,896, 5,643,578, 5,580,589, 5,589,466, 5,693,622, and 5,703,055; Science, 259:1745-49, 1993; Robinson et al., seminars in IMMUNOLOGY, 9:271-83, 1997; Luke et al., J. Infect. Dis. 175(1):91-97, 1997; Norman et al., Vaccine, 15(8):801-803, 1997; Bourne et al., The Journal of Infectious Disease, 173:800-7, 1996; and, note that generally a plasmid for a vaccine or immunological composition can comprise DNA encoding an antigen operatively linked to regulatory sequences which control expression or expression and secretion of the antigen from a host cell, e.g., a mammalian cell; for instance, from upstream to downstream, DNA for a promoter, DNA for a eukaryotic leader peptide for secretion, DNA for the antigen, and DNA encoding a terminator.)
The polynucleotide vaccines may also use both naked DNAs and DNAs formulated, for example, inside cationic lipids or liposomes.
The invention therefore proposes to provide a muitivalent vaccine formula which makes it possible to ensure vaccination against a number of feline pathogenic viruses.
Another objective of the invention is to provide such a vaccine formula combining different valencies while exhibiting all the criteria required for mutual compatibility and stability of the valencies.
Another objective of the invention is to provide such a vaccine formula which makes it possible to combine different valencies in the same vehicle.
Another objective of the invention is to provide such a vaccine which is easy and inexpensive to use.
Yet another objective of the invention is to provide a method for vaccinating cats which makes it possible to obtain protection, including multivalent protection, with a high level of efficiency and of long duration, as well as good safety.
The subject of the present invention is therefore a vaccine formula intended for cats, comprising at least three polynucleotide vaccine valencies each comprising a plasmid integrating, so as to express it in vivo in the host cells, a gene with one feline pathogen valency, these valencies being selected from those of the group consisting of feline leukaemia virus (FeLV), panleukopenia virus (FPV), infectious peritonitis virus (FIPV), coryza virus (FHV), calicivirosis virus (FCV), feline immunodeficiency virus (FIV) and possibly rabies virus (rhabdovirus), the plasmids comprising, for each valency, one or more of the genes selected from the group consisting of env and gag/pol for the feline leukaemia, VP2 for the panleukopenia, modified S (or S*) and M for the infectious peritonitis, gB and gD for the coryza, capsid for the calicivirosis, env and gag/pro for the feline immunodeficiency and G for the rabies.
Valency in the present invention is understood to mean at least one antigen providing protection against the virus for the pathogen considered, it being possible for the valency to contain, as subvalency, one or more modified or natural genes from one or more strains of the pathogen considered.
Pathogenic agent gene is understood to mean not only the complete gene but also the various nucleotide sequences, including fragments which retain the capacity to induce a protective response. The notion of a gene covers the nucleotide sequences equivalent to those described precisely in the examples, that is to say the sequences which are different but which encode the same protein. It also covers the nucleotide sequences of other strains of the pathogen considered, which provide cross-protection or a protection specific for a strain or for a strain group. It also covers the nucleotide sequences which have been modified in order to facilitate the in vivo expression by the host animal but encoding the same protein.
Preferably, the vaccine formula according to the invention comprises the panleukopenia, coryza and calicivirosis valencies.
It will be possible to add the feline leukaemia, feline immunodeficiency and/or infectious peritonitis valencies.
As regards the coryza valency, it is preferable to use the two genes coding for gB and gD, in different plasmids or in one and the same plasmid, or to use either of these genes.
For the feline leukaemia valency, use is preferably made of the two env and gag/pol genes integrated into two different plasmids or into one and the same plasmid, or the env gene alone.
For the feline immunodeficiency valency, use will preferably be made of the two env and gag/pro genes in different plasmids or in one and the same plasmid, or only one of these genes. Still more preferably, the FeLV-A env gene and the FeLV-A and FeLV-B env genes are used.
For the infectious peritonitis valency, use is preferably made of the two M and modified S genes together in two different plasmids or in one and the same plasmid, or either of these genes. S will be modified in order to make the major facilitating epitopes inactive, preferably according to the teaching of Patent PCT/FR95/01128.
The vaccine formula according to the invention can be presented in a dose volume of between 0.1 and 3 ml and in particular between 0.5 and 1 ml.
The dose will be generally between 10 ng and 1 mg, preferably between 100 ng and 500 &mgr;g and still more preferably between 1 &mgr;g and 250 &mgr;g per plasmid type.
Use will preferably be made of naked plasmids simply placed in the vaccination vehicle which will be in general physiological saline (0.9% NaCl), ultrapure water, TE buffer and the like. All the polynucleotide vaccine forms described in the prior art can of course be used.
Each plasmid comprises a promoter capable of ensuring the expression of the gene inserted, under its control, into the host cells. This will be in general a strong eukaryotic promoter and in particular a cytomegalovirus early CMV-IE promoter of human or murine origin, or optionally of another origin such as rats, pigs and guinea pigs.
More generally, the promoter may be either of viral origin or of cellular origin. As viral promoter, there may be mentioned the SV40 virus early or late promoter or the Rous sarcoma virus LTR promoter. It may also be a promoter from the virus from which the gene is derived, for example the gene's own promoter.
As cellular promoter, there may be mentioned the promoter of a cytoskeleton gene, such as for example the desmin promoter (Bolmont et al., Journal of Sub

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Feline polynucleotide vaccine formula does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Feline polynucleotide vaccine formula, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Feline polynucleotide vaccine formula will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2981064

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.