Feeding set adaptor

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S118000, C604S246000

Reexamination Certificate

active

06659976

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to systems for feeding solutions to patients. More particularly, the present invention relates to a feeding set adaptor which is used in association with a medical solution pump. The pump and an infusion set which is acted on by the pump typically form a system for the monitoring of fluid pressures, for bubble detection and for selective flow occlusion of solutions being fed to a patient. Specifically, the invention relates to an adaptor which is used to connect various parts of an infusion set and to integrate them with the pump to enable the monitoring of fluid pressures, the detection of bubbles, and the selective occlusion of fluid flow to prevent freeflow conditions.
2. State of the Art
There are numerous situations in which a solution must be fed to a patient over a period of time. In some situations, the solution is provided directly into the blood stream of the patient. Saline solutions and medications supplied in such a manner are typically referred to as parenteral solutions.
In contrast to a parenteral system, an enteral feeding system is used to provide nutrient solutions to patients who, for one reason or another, are unable to eat for themselves. Such a system typically includes a pump which is attached to an input tube connected to a supply container and to an output tube which is connected to a patient. The pump draws nutrient solution from the supply container and delivers the solution to the patient. By adjusting the number of rotations of the motor, or the frequency of rotations, in the pump, an enteral feeding pump can adjust its output to deliver a predetermined amount of nutrient solution (or even medication) at a desired rate.
A significant problem with many currently available enteral feeding systems, is that the intake and output tubes may become occluded. Unlike parenteral solutions, enteral feeding solutions have a relatively high viscosity, as they must carry sufficient nutrition to sustain the patient. Occlusion can occur, for example, if a fibrous substance is included in the enteral feeding solution and somehow combines to interfere with flow through the tube. Occlusion can also occur if a tube is bent sufficiently to interfere with flow therethrough, or if a roller clamp (as is commonly used for intravenous applications) is not sufficiently opened. Because of the viscosity of the solution, the amount of kinking of the tube or other interference required to interfere with solution flow is significantly less than that required in a parenteral infusion set.
If the intake tube becomes occluded, insufficient solution may be supplied to the pump, and thus to the patient. If the output tube becomes occluded, the flow of solution may be blocked, or the solution may be delivered suddenly at unusually high pressures. Additionally, medical personnel may fail to notice that the supply container is out of solution, or may not properly mount the intake and/or output tubes in the pump, thereby preventing the proper amount of solution from being delivered to the patient. Any of these scenarios can have tragic consequences if allowed to continue for a prolonged period of time.
Yet another concern with enteral feeding systems is that of viscosity of the solution and viscosity changes as a container full of solution is pumped to a patient. Knowing the viscosity of the fluid being pumped through the enteral feeding system is important because different viscosities are pumped at different rates by the enteral feeding pump. For example, a lower quantity of a highly viscous solution will be pumped by a given number of rotations of the enteral feeding pump motor than will be moved by the same pump when the solution has low viscosity. In other words, the amount of solution fed to the patient can differ substantially depending on the solution's viscosity. Thus, unless the pump is able to accurately determine and compensate for viscosity changes in the solution (i.e. by increasing or decreasing the rotations of the pump rotor in a given period of time), it is difficult to know exactly how much of the solution has been fed to the patient.
Yet another problem which is of concern during the administration of enteral feeding solutions is the presence of air bubbles. While very small air bubbles will not cause harm, large bubbles entering the blood stream can cause serious medical complications and even death. Thus, it is important to monitor the solution to ensure that any bubbles present do not exceed the desired threshold.
Still another problem which is present in enteral feeding systems, and the like, is freeflow. Often, the infusion set is placed in a free standing arrangement in which gravity forces the solution into the patient. The rate at which the solution enters the patient can be roughly controlled by various clamps, such as roller clamps, which are currently available on the market.
In many applications, it is necessary to precisely control the amount of solution which enters the patient. When this is the case, a regulating device, such as an enteral feeding pump, is placed along the infusion set to control the rate at which the solution is fed to the patient. In applications where a pump, etc., is used, the clamps used to regulate flow are typically opened to their fullest extent to prevent the clamp from interfering with the proper functioning of the pump. The clamp is opened with the expectation that the enteral feeding pump will control fluid flow through the infusion set.
It is not uncommon, for emergencies or other distractions to prevent the medical personnel from properly loading the infusion set in the enteral feeding pump. When the infusion set is not properly loaded in the pump and the clamp has been opened, a situation known as freeflow often develops. The force of gravity causes the solution to flow freely into the patient unchecked by the pump or other regulating device. Under a freeflow condition, an amount of solution many times the desired dose can be supplied to the patient within a relatively short time period. This can be particularly dangerous if the solution contains potent medicines and/or the patient's body is not physically strong enough to adjust to the large inflow of solution.
Numerous devices have been developed in an attempt to prevent free flow conditions. Such devices, however, typically add significantly to the overall cost of the infusion set and some provide only marginal protection against free flow. Thus, there is a need for a device that prevents a freeflow condition while allowing controlled flow through the infusion set. There is also a need for such a device which prevents freeflow if an infusion set is not properly mounted in a pump or other regulating means. Furthermore, there is a need for a device which prevents freeflow and which is inexpensive and easy to use.
The fluid flow monitoring mechanism disclosed in U.S. Pat. No. 5,720,721 and the anti-freeflow mechanism described in U.S. Pat. No. 5,704,584 (both of which are expressly incorporated herein) provided a significant improvement in monitoring for enteral feeding pumps and in control of freeflow situations.
As shown in
FIG. 1A
, the pump taught in U.S. Pat. No. 5,720,721 uses two pressure sensors to monitor viscosity and occlusions, and to enable the enteral feeding pump to compensate for the varying amount of solution which will pass through the pump with each rotation of the rotor. The pressure sensors engage the elastic tube of the infusion set and monitor changes in the strain on the infusion set by occlusions and viscosity changes. The strain information can then be processed by the pump and adjustments made to the number of rotations of the pump rotor to compensate. In the event that the occlusion is too severe to compensate by modification of the rotor rotations, the pump is shut down and an alarm signal generated so that replacement tubing may be provided.
Also included was an air detector which was disposed in the pump. The air detector was disposed in communica

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Feeding set adaptor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Feeding set adaptor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Feeding set adaptor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3102689

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.