Dispensing – With casing or support – For bottom discharge dispenser supported on horizontal surface
Reexamination Certificate
2002-02-07
2003-09-16
Jacyna, J. Casimer (Department: 3751)
Dispensing
With casing or support
For bottom discharge dispenser supported on horizontal surface
C222S146600, C222S325000, C141S018000, C141S352000, C141S364000, C141S375000, C062S389000
Reexamination Certificate
active
06619511
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to improvements in mounting adapters of the type for use in a bottled water cooler, and including a feed tube or probe for operating a valved bottle cap carried on the neck of a water-containing bottle to open the bottle cap incident to bottle mounting in an inverted orientation onto the water cooler so that water can flow downwardly from the bottle into a cooler reservoir. More particularly, this invention relates to an improved mounting adapter constructed from a relative minimum number of component parts, and wherein the adapter is designed for fast and simple snap-fit installation into and/or removal from the reservoir of a water cooler.
Bottled water coolers are generally known in the art to comprise a cooler housing supporting an upwardly open reservoir to receive a supply of water for on-demand dispensing via one or more faucet valves or the like. The cooler housing and/or the reservoir are designed to support a water bottle of typically three to five gallon capacity in an inverted orientation over the reservoir, so that water contained within the bottle may flow downwardly into and fill the reservoir to a level sufficient to cover an open bottle mouth formed in a bottle neck. In this regard, downward water flow from the bottle is accompanied by an upward exchange of air passing from the reservoir into the bottle to replace the volume of water displaced or discharged from the bottle. This air-water exchange between the overlying bottle and the underlying reservoir continues until the reservoir water level rises sufficiently to cover the bottle mouth, at which time upward air exchange is halted to correspondingly stop downward waterflow. Subsequent dispensing of water from the reservoir by operation of the faucet valves causes the water level within the reservoir to fall below and thus uncover the bottle mouth, whereupon the air-water exchange may resume to enable additional water to flow downwardly from the bottle to refill the reservoir. In many modern bottled water coolers of this general type, the reservoir may be associated with refrigeration means for chilling at least a portion of the water contained therein to provide chilled water used primarily for drinking or for use in making chilled beverages.
In the past, it has been conventional to provide the water bottle to a customer in a substantially filled state with the bottle mouth closed and sealed by a bottle cap. This bottle cap normally includes a tear-away skirt to allow the customer to remove the cap immediately prior to installation of the bottle in an inverted orientation on the cooler. More recently, alternative valved bottle caps have been designed to remain on the water bottle when the bottle is installed onto the cooler, wherein such alternative bottle caps are designed to be engaged and opened by a feed tube or probe mounted on the cooler in a position over the reservoir. See, for example, U.S. Pat. Nos. 4,874,023; 5,222,531; 5,232,125; 5,413,152 and 6,167,921. In these arrangements, the feed tube or probe is provided as a portion of a mounting adapter installed onto the cooler to extend over and substantially cover the top of the reservoir to reduce or prevent entry of dirt and other contaminants. The feed tube or probe has a contoured head or tip for engaging a valve plug on the bottle cap to open a flow path as an incident to bottle installation, thereby permitting bottle installation onto the cooler with little or no water spillage. The feed tube or probe may further be designed to return the valve plug to a closed position on the cap as the bottle is removed from the cooler.
Feed tube adapters of this general type are normally equipped with a seal ring gasket or the like for sealingly engaging the reservoir, and an air filter is mounted on the adapter to filter air drawn into the cooler reservoir along an entry flow path. With this construction, the water within the reservoir is protected against contact with airborne particulate and contaminants which may be present in ambient air. In many adapter designs, the seal ring gasket is carried about the exterior of the mounting adapter and is sized to bindingly engage an interior wall segment of the cooler reservoir with a sufficient engagement force whereby the gasket additionally performs the function of retaining the adapter in position on the reservoir during normal use. In some applications, however, it is desirable to provide the mounting adapter without the air filter for filtering air drawn into the cooler reservoir. In such nonfiltered applications, it has generally been necessary to retain the seal ring gasket for frictionally retaining the adapter on the cooler reservoir during normal use.
The present invention provides an improved and simplified construction for a feed tube mounting adapter, wherein the adapter and the associated cooler reservoir include snap-fit mounting means for quickly, easily and removably mounting the adapter onto the reservoir in a secure and stable manner. Beneficially, the improved mounting adapter may be utilized in alternative configurations including or excluding the seal ring gasket and associated air filter.
SUMMARY OF THE INVENTION
In accordance with the invention, an improved mounting adapter is provided for use in a bottled water cooler of the type having an upwardly open cooler reservoir for receiving a supply of water from a bottle mounted over the reservoir in an inverted orientation to permit water downflow from the bottle to the reservoir. The improved adapter includes a compact and substantially unitized adapter body or shell constructed from a minimum number of component parts and adapted for removable snap-fit mounting onto the cooler reservoir at the open upper end thereof. The adapter additionally includes an upstanding feed tube or probe for operatively engaging a valved bottle cap mounted on the neck of a water-containing bottle supported in an inverted orientation over the cooler reservoir.
In the preferred form of the invention, the adapter body is constructed from molded plastic or the like as a unitary or substantially unitary component to include an upper cylindrical sleeve segment defining a short radially outwardly projecting support rim at the upper end thereof for seating onto a matingly shaped support ledge formed at the upper end of the cooler reservoir. A lower margin of this upper sleeve segment is joined to a radially inwardly extending annular landing, which is in turn joined at an inner margin thereof to a suspended central cup or well having a bottom wall. A tubular central post upstands from this bottom wall and terminates at an upper tip end disposed at or a short distance above the annular landing. A feed tube insert provided as a separately molded component is mounted as by a snap-fit connection within the central post and cooperates therewith to define the feed tube having separate flow passages for air and water. An upper end tip or head of the feed tube insert is contoured for operatively engaging a valved bottle cap, as shown and described in U.S. Pat. No. 5,413,152, which is incorporated by reference herein.
The upper support rim on the mounting adapter carries snap-fit mounting means for removably and securely mounting the adapter onto the upper end of the cooler reservoir. In a preferred form, the snap-fit mounting means comprises outwardly projecting detent pins formed at generally diametrically opposed positions on the support rim. At one side of the adapter, the detent pins may be carried by a spring tab projecting upwardly from the annular landing and separated from the remainder of the cylindrical sleeve segment by a pair of vertically extending slots. The detent pins on the adapter are positioned for snap-fit engagement into matingly sized and positioned detent ports formed in an upwardly projecting reservoir flange which circumscribes the support ledge at the upper end of the cooler reservoir.
In normal operation, the detent pins securely support and retain the mounting adapter on the reservoir, with
Busick Louis M.
Coyle Declan Laurence
Hydak Kenneth J.
Sabin Stephen John
Jacyna J. Casimer
Kelly Bauersfeld Lowry & Kelley LLP
Oasis Corporation
LandOfFree
Feed tube adapter for a bottled water cooler does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Feed tube adapter for a bottled water cooler, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Feed tube adapter for a bottled water cooler will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3019576