Feed forward method for canister purge compensation within...

Internal-combustion engines – Charge forming device – Including exhaust gas condition responsive means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S520000

Reexamination Certificate

active

06523531

ABSTRACT:

TECHNICAL FIELD
This invention relates to generally to engine air/fuel ratio control systems, and more particularly to air/fuel ratio control systems wherein such engine recovers fuel vapors which are purged from the fuel system and are fed to the engine.
BACKGROUND AND SUMMARY
Engine air/fuel control systems are known in which fuel delivered to the engine is adjusted in response to the output of an exhaust gas oxygen sensor to maintain average air/fuel ratios at a stoichiometric value. Such systems may also include a fuel vapor recovery system wherein fuel vapors are purged from the fuel system into the engine's air/fuel intake. An example of such a system is disclosed in U.S. Pat. No. 5,048,493.
More particularly, current statutory regulations place a limit on the amount of fuel vapor that a passenger vehicle or light truck can emit while in operation or at rest. It is no longer acceptable merely to vent gasoline vapor to the atmosphere in order to relieve an accumulation of vapor due to high ambient temperature or heating of the fuel by proximity to sources of heat in the vehicle. The production of vapor can, in principle, be minimized by careful design, but cannot be entirely eliminated when certain conditions are present. Pressure build-up is reduced by storage of vapor on the surface of a material with high surface area, typically activated charcoal. In addition, to control the amount of vapor accumulated, modern automobiles carry out an operation called purge, in which vapor from the fuel tank and the storage canister is ingested into the engine, where it adds to fuel delivered by the usual fuel injection process. The purge process has the effect of adding both fuel and air to that supplied as part of the usual engine control strategy. In general, the delivered fuel and air are unmetered, because precise metering would entail both a flow meter and a sensor capable of measuring the fuel concentration in the purge flow. The addition of unmetered fuel and air complicates the control of the ratio of air to fuel (usually termed A/F), a quantity which must be closely regulated for minimum emissions. In extreme cases, excessive fuel from purge may cause the engine to stall. In the absence of a compensatory mechanism, the entire burden of handling the effects of purge is left to the usual closed-loop air/fuel (A/F) control strategy. In general terms, an excess of fuel due to purge will be handled by a reduction of injected liquid fuel; conversely, an excess of air (e.g., caused by a purge with minimal concentration of fuel) will be handled by an increase in the injected fuel. In neither case is the tendency of the added air flow to increase engine speed countered, nor is the effect of this flow on other parts of the strategy that depend on the knowledge of the mass flow of air taken into account. A further complication arises from the fact that some control strategies make diagnostic use of the value or pattern of values of the prime control variable in the A/F strategy. When the effect of purge is handled by the closed-loop control strategy, this control variable may spend considerable time at otherwise unusual values, thereby complicating diagnostic inferences.
To mitigate any deleterious effects of purge as just described, it is common to employ a purge compensation strategy. Compensation for purge fuel is frequently implemented by subtracting a term from the calculation of fuel for each cylinder event. This term is intended to be an estimate of the fuel per event provided by the purge flow. The underlying principle is the following: if this term is correct, then the average value of the internal estimate of the A/F control variable will be equal to its nominal value. In typical control strategies the A/F control variable is called LAMBSE, and its nominal value is unity. More particularly, LAMBSE is at an average value of unity when engine is operating at stoichiometry and there are no steady-state air/fuel errors or offsets. For a typical example of operation, LAMBSE ranges from 0.75-1.25. In typical closed-loop control, the value of LAMBSE is driven in an oscillatory fashion on the basis of an exhaust gas oxygen (EGO) sensor. Hence, the value of the purge term in the fuel calculation is adjusted in a direction such that the mean value of LAMBSE tends toward unity. This is usually performed essentially as a simple integral controller, in which the difference between LAMBSE and unity is integrated (accumulated), multiplied by a chosen constant parameter, converted to units of fuel injected per event, and inserted (subtractively) into the fuel calculation. In this method of computing fuel compensation, the control variable LAMBSE is effectively treated as the output of a system for which the compensation value is the control input.
The inventors herein have discovered numerous problems with prior air/fuel-purge compensation control systems. More particularly, the inventors have recognized that with the above described method of computing fuel compensation, the control variable LAMBSE is effectively treated as the output of a system for which the compensation value is the control input. Considered from this viewpoint, the system contains a delay between the time of application of the control input and the time of consequence of this input as observed at the system output. As is usual when such a system is treated with simple integral control, the integral control coefficient must be chosen to be small enough to avoid instability. Such instability could manifest itself, for example, as oscillations of system input and output. The practical consequence is that the extra fuel that is present upon initiation of the purge operation is compensated only after a significant time has elapsed. The disruptive effect of to this lag in compensation may be partially mitigated by opening the purge valve slowly rather than rapidly. Unfortunately, if this is done, the time required to purge the fuel stored in the canister increases. In some cases this may pose a difficulty, since other required aspects of engine control and diagnostics are best performed when purge is not in operation. Another disadvantage of the simple integral compensation method is that a correct estimate of the fuel content of the purge stream occurs, at best, only in steady state when the error in the mean value of LAMBSE has been reduced to zero. This is a direct consequence of not treating delays explicitly.
In accordance with the present invention, a method for air/fuel operation of an engine is provided. The engine is supplied fuel from both a fuel purging system to purge fuel in a fuel supply and feed such purged fuel to an intake manifold of the engine and a fuel injection system to inject fuel from such fuel supply into at least one cylinder of such engine. The method includes producing a first air/fuel ratio control signal in accordance with measured exhaust gas oxygen emission from the engine; producing a second air/fuel ratio control signal in accordance with measured fuel concentration and transport delay through the fuel purging system; combining the first and second air/fuel ratio control signals into a composite control signal; and feeding such composite control signal to the fuel injection system.
In one embodiment, producing the second air/fuel ratio control signal comprises determining fuel flow rate through the purge system.
In one embodiment, the purge system includes a valve, such valve passing the fuel in the purging system to the intake manifold at a rate related to a duty cycle of a control signal fed to such valve and wherein the flow rate is determined in response to the duty cycle the control signal fed to the valve.
In one embodiment, the purge system includes a hydrocarbon sensor responsive to fuel in the purging system and wherein the second air/fuel ratio control signal is produced in accordance with an output of such sensor.
In one embodiment, the method includes determining a species of hydrocarbon in the fuel being purged and adjusting the second air/fuel ratio control signal in acco

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Feed forward method for canister purge compensation within... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Feed forward method for canister purge compensation within..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Feed forward method for canister purge compensation within... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3143628

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.