Feed air precooling and scrubbing system for cryogenic air...

Refrigeration – Cryogenic treatment of gas or gas mixture – Separation of gas mixture

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S644000

Reexamination Certificate

active

06732544

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to cryogenic air separation and, more particularly, to the preparation of feed air for the cryogenic air separation.
BACKGROUND ART
In the cryogenic separation of air using one or more distillation columns to produce one or more products such as nitrogen, oxygen and argon, the feed air is compressed, cleaned of high boiling impurities, and cooled prior to passage into the column or columns of the plant. The operation of the feed air compressor or compressors consumes a significant amount of power, and any improvement which can serve to reduce the compressor power consumption associated with the operation of a cryogenic air separation plant would be very desirable.
Accordingly it is an object of this invention to provide a feed air preparation system which can serve to decrease the compressor power consumption associated with the operation of a cryogenic air separation plant.
SUMMARY OF THE INVENTION
The above and other objects, which will become apparent to those skilled in the art upon a reading of this disclosure, are attained by the present invention, one aspect of which is:
A method for precooling and scrubbing feed air for a cryogenic air separation plant comprising:
(A) passing nitrogen vapor taken from a cryogenic air separation plant to a feed air precooler/scrubber and warming the nitrogen vapor within the feed air precooler/scrubber by heat exchange with water to produce chilled water;
(B) directly contacting the chilled water with feed air containing particulate matter to cool the feed air and to scrub particulate matter from the feed air; and
(C) passing the cooled and scrubbed feed air out from the feed air precooler/scrubber for passage on to the cryogenic air separation plant.
Another aspect of the invention is:
A feed air precooler/scrubber comprising:
(A) an evaporative cooling section, means for providing nitrogen vapor from a cryogenic air separation plant to the evaporative cooling section, and means for passing water to the evaporative cooling section;
(B) a chilling and scrubbing section, means for passing water from the evaporative cooling section to the chilling and scrubbing section, and means for passing feed air into the chilling and scrubbing section; and
(C) means for withdrawing feed air from the chilling and scrubbing section for passage on to the cryogenic air separation plant.
As used herein the terms “precooling” and “precooler” mean respectively method and apparatus for cooling feed air prior to the passage of the feed air to the main or primary heat exchanger of a cryogenic air separation plant.
As used herein the term “column” means a distillation or fractionation column or zone, i.e. a contacting column or zone, wherein liquid and vapor phases are countercurrently contacted to effect separation of a fluid mixture, as for example, by contacting of the vapor and liquid phases on a series of vertically spaced trays or plates mounted within the column and/or on packing elements such as structured or random packing. For a further discussion of distillation columns, see the Chemical Engineer's Handbook, fifth edition, edited by R. H. Perry and C. H. Chilton, McGraw-Hill Book Company, New York, Section 13
, The Continuous Distillation Process.
The term “double column” is used to mean a higher pressure column having its upper portion in heat exchange relation with the lower portion of a lower pressure column. A further discussion of double columns appears in Ruheman “The Separation of Gases”, Oxford University Press, 1949, Chapter VII, Commercial Air Separation.
Vapor and liquid contacting separation processes depend on the difference in vapor pressures for the components. The high vapor pressure (or more volatile or low boiling) component will tend to concentrate in the vapor phase whereas the low vapor pressure (or less volatile or high boiling) component will tend to concentrate in the liquid phase. Distillation is the separation process whereby heating of a liquid mixture can be used to concentrate the more volatile component(s) in the vapor phase and thereby the less volatile component(s) in the liquid phase. Partial condensation is the separation process whereby cooling of a vapor mixture can be used to concentrate the more volatile component(s) in the vapor phase and thereby the less volatile component(s) in the liquid phase. Rectification, or continuous distillation, is the separation process that combines successive partial vaporizations and condensations as obtained by a countercurrent treatment of the vapor and liquid phases. The countercurrent contacting of the vapor and liquid phases can be adiabatic or nonadiabatic and can include integral (stagewise) or differential (continuous) contact between the phases. Separation process arrangements that utilize the principles of rectification to separate mixtures are often interchangeably termed rectification columns, distillation columns, or fractionation columns. Cryogenic rectification is a rectification process carried out at least in part at temperatures at or below 150 degrees Kelvin (K).
As used herein the term “indirect heat exchange” means the bringing of two fluids into heat exchange relation without any physical contact or intermixing of the fluids with each other.
As used herein the term “nitrogen vapor” means a gas having a nitrogen concentration of at least
78
mole percent.
As used herein the term “feed air” means a mixture comprising primarily oxygen and nitrogen, such as ambient air.
As used herein the terms “upper portion” and “lower portion” mean those sections of a column respectively above and below the mid point of the column.
As used herein the term “direct heat exchange” means the transfer of heat through contact of cooling and heating entities.


REFERENCES:
patent: 5282726 (1994-02-01), Warren
patent: 5306331 (1994-04-01), Auvil et al.
patent: 5321953 (1994-06-01), Olson, Jr.
patent: 5379598 (1995-01-01), Mostello
patent: 5456083 (1995-10-01), Hogg et al.
patent: 5802872 (1998-09-01), Billingham et al.
patent: 6237366 (2001-05-01), Arman et al.
patent: 6295836 (2001-10-01), Nguyen et al.
patent: 6402809 (2002-06-01), Monereau et al.
patent: 2002/0046767 (2002-04-01), Gourdain et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Feed air precooling and scrubbing system for cryogenic air... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Feed air precooling and scrubbing system for cryogenic air..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Feed air precooling and scrubbing system for cryogenic air... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3246987

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.