Feed additive for ruminant animals

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Specially adapted for ruminant animal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S442000, C426S053000, C426S807000

Reexamination Certificate

active

06312710

ABSTRACT:

SUMMARY OF THE INVENTION
The invention relates to a feed additive for ruminant animals. When used as a component in a diet formulated for this class of animal, the invention additive will enhance feed intake, increase rumenal digestive efficiency, and aid dietary ionic balance. In a preferred embodiment of the invention two common byproduct materials, glutamic acid fermentation solubles and corn fermentation solubles are mixed and then dried at a temperatures that does not denature the organic nitrogen components present therein. This temperature varies with the drying method used and generally ranges from not less than about 80 to not more than about 900 degrees Fahrenheit.
In this invention, either of the glutamic acid fermentation or corn fermentation solubles, when dried as indicated above, can be used independently, but maximum response is elicited when both are present. To facilitate drying, the liquid solubles (either as a mixture of the two or independently), may be blended onto a carrier such as wheat middlings. In addition, one or a combination of proteolytic, amyalytic and cellulytic enzymes of either bacterial or fungal origin as well as amino acids such as glutamic acid can be added either prior to or after drying to further enhance ruminant response. Thus, the invention relates to the dietary supplementation of ruminant animals with a combination of amino acids, peptides, and non-protein nitrogen supplied by either combining and drying glutamic acid fermentation solubles and corn fermentation solubles optionally with a carrier such as wheat middlings if needed, or either of these fermentation solubles alone optionally combined with said carrier. The drying of these materials is preferably accomplished at temperatures less than 900 degrees Fahrenheit. Enzymes of fungal or bacterial origin as well as amino acids can be added to enhance biological effect.
BACKGROUND OF THE INVENTION
The normal diet of the ruminant animal is forage. Forage includes grasses, legumes and cellulytic byproducts of agricultural production. These are either fed fresh as pasture or green chop; in a dry form as hay; or in a preserved state as silage. The ability to utilize these materials as sources of nutrients is only possible as a result of pregastric bacterial fermentation in the rumen, the nonfundic portion of the animal's stomach. Here, bacterial action reduces the complex structural carbohydrates; cellulose, hemicellulose, and lignin and the associated nonstructural carbohydrates; pectin, starches and sugars, to either fatty acids or more chemically simplistic carbohydrate forms, which are then subjected to gastric action in the fundic stomach and small intestine.
The adaptation of ruminants to pregastric digestion has involved a system of retention of digesta, which is an essential part of the mechanism for maximal extraction of energy. This retention requires some sacrifices in food intake, which becomes more limited on forage based diets because the coarser ingesta must be retained longer to achieve efficient extraction of energy. This poses a special problem in the modern, domesticated ruminant, in that the nutrient demands created by genetic selection for rapid lean muscle growth or high levels of milk production far exceed the supply generated by rumenal fermentation of forage based diets. The diets that must be fed require the addition of large amounts of nonstructural carbohydrate (starches and sugars) fed in the form of grain which, unfortunately, often is a source of physiologic and metabolic stress. These problems are associated with the changes which occur in rumenal fermentation as a result of grain ingestion. As a consequence, feeding strategies must attempt to maximize forage use while not compromising nutrient supply needed for maintenance and production.
A solution to the problem of nutrient supply and demand in the ruminant animal, as imposed by the limitations of bacterial, pregastric digestion, is to enhance the efficiency and rate at which this process occurs. The rumen is a continuous fermentation system that is provided with nutrients (feeds), buffers (salivary and other salts) and fluids (water and saliva) on both a continuous and an intermittent basis. The efficiency of this fermentation is measured through rumen turnover. Turnover is conventionally expressed as the portion of the rumen contents that leaves the rumen per hour. Liquids and solids turn over at different, but usually related, rates. Liquid flow rates, as proportions of the total liquid volume, have been found to turn over at rates that increased from <8 to 13.5%/hr as dry matter intake went from 5 to 21 kg/day (
Livestock Prod. Sci.,
17:37, 1987). At the same time, solids turnover increased from 3 to 5%/hr due to increased intake. In other studies, values of 17%/hr for liquids (
Can. J. Ani. Sci.,
64 (Supp.):80, 1984) and as high as 7.0%/hr for concentrates (
J. Dairy Sci.,
65:1445, 1982) were reported. In a typical ration of a dairy cow consuming >20 kg dry matter/day, representative rumen digesta passage rates would be 15%/hr for liquids, 6%/hr for grains and 4.5%/hr for forages. The rates would all decrease with a lower level of intake.
Another important rumen characteristic associated with turnover rate is microbial yield, where microbial yield is defined as the quantity of microbial mass flowing from the rumen per day. A further, and important refinement of this expression of microbial yield, which is also effected by turnover rate, is the efficiency of microbial yield. This is usually expressed as grams of microbial protein (or nitrogen) produced per kg of organic matter (OM) digested in the rumen. Both aspects of microbial production have applied significance. Microbial yield is important as an index of the amount of microbial protein available to the ruminant animal per day. Microbial efficiency is important as part of the calculation of microbial yield where: microbial yield (gr of microbial N/day)=microbial efficiency (gr microbial N/kg digested organic matter)×kg OM digested in the rumen per day.
Because of the rapid rumen turnover rates commonly found in cattle with high dry matter intakes, such as dairy cattle, high microbial efficiencies are expected. If, however, an imbalance in the nutrients available to the rumen microbes occurs, the microbial efficiency can be impaired. This is particularly evident if ruminally available nitrogen or carbohydrate sources are inadequate.
Rumen microbes, with a few exceptions, use only carbohydrates (CHO) for energy, and growth will be proportional to the amount of carbohydrate fermented. This relationship is expressed by the equation:
Gr of microbial protein/day
=
kg total CHO digested/day in the rumen
×
gr microbial protein/kg CHO digested
In this equation, carbohydrate digested includes the fermentable portion of the fibre, plus sugars and starches. In practice, the analytical techniques used to determine carbohydrates do not clearly delineate the contribution made to the various sources in a forage-grain ration. Commonly, neutral detergent fiber (NDF) is used to quantitate the total structural or cell wall carbohydrates, which include cellulose, hemicellulose and lignin. Sugars and starches are not individually determined, but are included, along with pectins, gums and other components, in a fraction referred to as non-structural carbohydrate (NSC). As the digestibility of NSC in the rumen is considerably higher than that of NDF, it follows that the amount of total carbohydrate digested per day is positively related to the proportion of NSC in the diet. The primary source of NSC in the diet of dairy cows is grain. However, as previously indicated, it is both nutritionally and physiologically desirable to obtain a greater portion of the ruminally available carbohydrate from the forage portion of the diet, so that the risk associated with feeding high levels of grain to the animal is reduced.
Although energy, i.e., carbohydrates, is usually considered to be the most l

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Feed additive for ruminant animals does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Feed additive for ruminant animals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Feed additive for ruminant animals will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2597103

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.