Feature quality in array fabrication

Image analysis – Applications – Manufacturing or product inspection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C702S019000, C702S020000

Reexamination Certificate

active

06587579

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to arrays, particularly polynucleotide arrays such as DNA arrays, which are useful in diagnostic, screening, gene expression analysis, and other applications.
BACKGROUND OF THE INVENTION
Polynucleotide arrays (such as DNA or RNA arrays), are known and are used, for example, as diagnostic or screening tools. Such arrays include regions of usually different sequence polynucleotides arranged in a predetermined configuration on a substrate. These regions (sometimes referenced as “features”) are positioned at respective locations (“addresses”) on the substrate. The arrays, when exposed to a sample, will exhibit an observed binding pattern. This binding pattern can be detected upon interrogating the array. For example all polynucleotide targets (for example, DNA) in the sample can be labeled with a suitable label (such as a fluorescent compound), and the fluorescence pattern on the array accurately observed following exposure to the sample. Assuming that the different sequence polynucleotides were correctly deposited in accordance with the predetermined configuration, then the observed binding pattern will be indicative of the presence and/or concentration of one or more polynucleotide components of the sample.
Biopolymer arrays can be fabricated by depositing previously obtained biopolymers (such as from synthesis or natural sources) onto a substrate, or by in situ synthesis methods. Methods of depositing obtained biopolymers include loading then touching a pin or capillary to a surface, such as described in U.S. Pat. No. 5,807,522 or deposition by firing from a pulse jet such as an inkjet head, such as described in PCT publications WO 95/25116 and WO 98/41531, and elsewhere. For in situ fabrication methods, multiple different reagent droplets are deposited at a given target location in order to form the final feature (hence a probe of the feature is synthesized on the array stubstrate). The in situ fabrication methods include those described in U.S. Pat. No. 5,449,754 for synthesizing peptide arrays, and described in WO 98/41531 and the references cited therein for polynucleotides. The in situ method for fabricating a polynucleotide array typically follows, at each of the multiple different addresses at which features are to be formed, the same conventional iterative sequence used in forming polynucleotides from nucleoside reagents on a support by means of known chemistry. This iterative sequence is as follows: (a) coupling a selected nucleoside through a phosphite linkage to a functionalized support in the first iteration, or a nucleoside bound to the substrate (i.e. the nucleoside-modified substrate) in subsequent iterations; (b) optionally, but preferably, blocking unreacted hydroxyl groups on the substrate bound nucleoside; (c) oxidizing the phosphite linkage of step (a) to form a phosphate linkage; and (d) removing the protecting group (“deprotection”) from the now substrate bound nucleoside coupled in step (a), to generate a reactive site for the next cycle of these steps. The functionalized support (in the first cycle) or deprotected coupled nucleoside (in subsequent cycles) provides a substrate bound moiety with a linking group for forming the phosphite linkage with a next nucleoside to be coupled in step (a). Final deprotection of nucleoside bases can be accomplished using alkaline conditions such as ammonium hydroxide, in a known manner.
The foregoing chemistry of the synthesis of polynucleotides is described in detail, for example, in Caruthers,
Science
230: 281-285, 1985; Itakura et al.,
Ann. Rev. Biochem.
53: 323-356; Hunkapillar et al.,
Nature
310: 105-110, 1984; and in “Synthesis of Oligonucleotide Derivatives in Design and Targeted Reaction of Oligonucleotide Derivatives”, CRC Press, Boca Raton, Fla., pages 100 et seq., U.S. Pat. Nos. 4,458,066, 4,500,707, 5,153,319, 5,869,643, EP 0294196, and elsewhere. The phosphoramidite and phosphite triester approaches are most broadly used, but other approaches include the phosphodiester approach, the phosphotriester approach and the H-phosphonate approach. The substrates are typically functionalized to bond to the first deposited monomer. Suitable techniques for functionalizing substrates with such linking moieties are described, for example, in Southern, E. M., Maskos, U. and Elder, J. K., Genomics, 13, 1007-1017, 1992.
In the case of array fabrication, different monomers may be deposited at different addresses on the substrate during any one iteration so that the different features of the completed array will have different desired biopolymer sequences. One or more intermediate further steps may be required in each iteration, such as the conventional oxidation and washing steps in the case of in situ fabrication of polynucleotide arrays.
In array fabrication, the quantities of polynucleotide available are usually very small and expensive. Additionally, sample quantities available for testing are usually also very small and it is therefore desirable to simultaneously test the same sample against a large number of different probes on an array. These conditions require use of arrays with large numbers of very small, closely spaced features. It is important in such arrays that features actually be present, that they are put down accurately in the desired target pattern, are of the correct size, and that the DNA is uniformly coated within the feature. If any of these conditions are not met within a reasonable tolerance, and the array user is not aware of deviations outside such tolerance, the results obtained from a given array may be unreliable and misleading. This of course can have serious consequences to diagnostic, screening, gene expression analysis or other purposes for which the array is being used. However, in any system used to fabricate arrays with the required small features, there is inevitably some degree of error, either fixed (and hence repeated) and/or random. The present invention realizes that in the special case of in situ fabrication method or any other method requiring deposition of multiple droplets at a target feature location, drop deposition errors from cycle to cycle may be different and are cumulative in determining errors in the finally formed features.
It would be desirable then to provide a means by which errors in features resulting during an in situ or any array fabrication method requiring multiple droplet deposition for a target feature location, can be readily determined.
SUMMARY OF THE INVENTION
The present invention further realizes that in array fabrication using the in situ method or any method using multiple drop deposition for a target feature location, the final error in a feature is a sum of errors during respective droplet depositions, and that such individual droplet errors may vary during each cycle at a given feature. Such errors may either be fixed or random. For example, in the fabrication of a polynucleotide array using phosphoramidite chemistry, different drop dispensers (such as pulse jets which eject drops drops toward a surface) may be provided to deposit different phosphoramidite droplets. Each nozzle may have its own inherent fixed drop dispensing error (such as error in drop dispenser position within a head, droplet size, or direction of drop). Also, the positioning system may have fixed inherent errors. Further, random errors can occur which are different during the dispensing of any one droplet. For example, air currents may vary during different droplet dispensing steps, or ambient temperature variations may cause expansion/contraction in dispensing apparatus components which affects absolute and/or relative positions of dispensed droplets. Thus, an error in the final feature may be a sum of errors from individual drop deposition at each feature. The present invention provides a means of tracking such individual droplet deposition error for a feature and using such multiple drop deposition error for that feature to determine an overall feature error.
In one aspect, the present invention provides a method which inclu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Feature quality in array fabrication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Feature quality in array fabrication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Feature quality in array fabrication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3037130

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.